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CHAPTER 1

/ INTRODUCTION

-/ The design of optimal controllers for linear stochastic systems
requires an accurate description of the system. However, the construction
of an accurate model of real systems is often not possible. These

inaccuracies can stem from the fact that the adopted linear model may be

only a first-order approximation of a nonlinear system. Also, there may be
actual uncertainty in the parameters of the real system. This type of

uncertainty can arise, for instance, if one wishes to design a single type

of controller for a large number of similar systems, when, for example, the
system is mass produced and it is impractical to tune each controller to ;Qf
each system. Another situation where this type of uncertainty can arise

is when the pérameters of a single system vary slowly over long periods of

time, perhaps due to wear or changes in the environment. These uncertainties,

in this thesis, are grouped into a vector of parameters. We consider

R R . o e [
everal ways of handllng these uncertalnties_in the design process, 71 . ! i d
ré‘u ' 3 ! //w? AAL EV IS O

R Often, it is péssiblé to assign a prior distrlbution td the
parameter vector. Then by considering the unknown parameter vector as a new
set of system states, a nonlinear stochastic control problem caﬁ be formed.
However, this type of problem may not be desirable, especially if the
uncertainties were created by linearization of a nonlinear system in the
first place. In this case, one may wish to build a controller that exhibits

adequate performance for all values of the parameter, perhaps based on the

weight each value of the parameter receives from the distribution.
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Another method is to assume that the parameters vary within a
certain range about a nominal value. The use of an optimal controller for
the nominal value may result in instabilities or poor performance for off-
nominal values of the parameter. To design controllers for these systems,
some performance must be sacrificed to desensitize the controller.

A third method of handling these uncertainties is to assume that
the parameters are unknown within a given set. This set may be compact,
or have a finite number of values. In many circumstances, one may design
an adaptive controller that identifies the unknown parameter and tunes
itself to the identified model. However, in some circumstances this

identification scheme is not practical, if, for instance the parameters

are slowly varying, or if the parameters jump to different values at unknown
instances in time. In such cases, the identification process may not have
time to converge before a new identification needs to be made. Then, it may be
desirable to design a controller that does not identify the parameter, but has
acceptable performance for all the values within the given set.

Any one of these methods of handling uncertainties in parameters,
or a combination of them, can be considered when designing controllers which
exhibit desirable insensitivity properties. This thesis will discuss two
methods of designing controllers for systems whose corresponding models have
uncertain parameters. We will consider linear stochastic models of the

form:

:’ct = F(e)xt + c;(e)ut + Kdt (1la)

yg = H(9)xt + LGt (1b)
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where 6 is a constant vector of unknown parameters, and ﬁt and 6t are white

noise processes. A time average of a quadratic cost is to be minimized:

4,

J= ln %éT (kW x, +uMa)de . )

Equations (1) and (2) are not well-defined mathematically since
(1) is generated by white noise, which is not a real physical process, and
(2) is an integral of a stochastic process. In Chapter 2, Equation (1) is put
into Ito differential form, and Equation (2) is correspondinglvy redefined.
The exact assumptions on the unknown parameters are stated. Finally, an exact
description of the problem that is solved in the design of each type of
controller is stated.

The first type of controller that is considered we call a least
sensitive controller since this controller minimizes the average cost over
the entire parameter set based on the assumption that all parameters are
equally likely. The second type of controller that is considered we call a
minimax controller since a controller is sought that minimizes the worst-case
cost.

In Chapter 3, we consider the unknown parameter to be in a compact
set centered about a nominal value. We also assume that each value in the
set is equally likely, so that a uniform distribution is induced on the set.
Therefore, we use a combination of all of the three types of assumptions on
the parameter set discussed above. The objective in this chapter is to
design a controller that minimizes the average cost over the entire set.

The optimal controller for the nominal value is a linear feedback of estimates

of the full state. To facilitate the solution of this problem, we restrict
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{ the class of controllers to the class of linear feedback controllers. However, .
3; the dimension of the controllers is not restricted to that of the dimension of .

-
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P

Y

. the states since full-order controllers are not always required to achieve

acceptable performance. Ashkenzai and Bryson [1] have presented a method for :1
;;% solution of this problem whén discrete distributions are assumed. It is shown -
:? that this method may be extended to continuous distributions. We consider the
- performance of this type of controller for several examples, and these examples
L~
'jf; show that some performance must indeed be sacrificed to achieve lower parameter
Eii sensitivity.
;; In Chapter 4, we again assume that the unknown parameter is in a
f;? compact set centered around the nominal value. In this problem we seek to
:. minimize the worst-case performance. A way to design these controllers is to
use the optimal linear regulator for the model that exhibits the worst
::g performance. However, it is not immediately obvious that these two problems 3
S .
f; have the same solution since the model that is least favorable for control may J
not be least favorable for state estimation. Looze, Poor and others [7] have 3
.Ei shown that these two solutions are equivalent for the case where there is g
b" < J
E; uncertainty in the second-order statistics of the noise processes. An R
'1:, attempt is made to use a similar procedure for the cise now under considera-
5}; tion, that is, when there is uncertainty in the system dynamics. Chapter 4
%; explains how an error model was formed in the case of uncertainty in the noise
g? statistics, and how this model was used to show the equivalence of the two
ii% solutions in this case. However, for the problem now under consideration,
';; this error model cannot be formed, and thus the equivalence of the two
o solutions is not clear. 1Indeed, for the scalar case, we find parameter sets
o)
- 1

Lai.




V4

- N
N Wt

such that the two solutions are not equivalent. Therefore, in Chapter 4,
we find all the parameter sets satisfying certain convexity conditions such
that the two solutions are equivalent.

The examples of Chapter 3 are then considered in Chapter 4. The
least sensitive controllers of Chapter 3 are seen to exhibit superior
performance over a wider range of parameter values in the sets under
consideration, but,if the range.of parameter values off the nominal value is
large enough, the minimax controllers of Chapter 4 have a lower maximum cost
than the least sensitive controllers of Chapter 3.

In Chapter 5, a second~order singie-input single-output example is
considered. Then, some aspects of the design and performance of the two
types of controllers are discussed that are not brought out in the previcus
chapters. The order of the system allows us to investigate the relative
performance of reduced-order least sensitive controllers with respect to the
full-order least sensitive controllers and the full-order minimax controllers.
This chapter shows how maximin controllers for a particular example may be
designed on a numerical basis. Also, the equivalence of this solution to
the minimax solution may be analyzed numerically.

Finally, in Chapter 6, the general properties of the two types of
controllers are discussed. We also discuss the advantages and disadvantages
of each design, and thus outline what factors are considered in choosing
between the two designs. Finally, we discuss what other designs may be

considered to achieve a desirable performance of the control system.
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CHAPTER 2
PROBLEM STATEMENT
The system equations, (1), can be made precise by modelling

dy
yt: §t = Tﬁf . Then the system equations can be put in Ito differential

dxt = F(e)xtdt + G(e)utdt + det s (3a)
dyt = H(e)xtdt + Ldvt . ' (3b)

(:é) is a vector Wiener process, with
t

%) = o , (4a)
dv
dw /dw) - Q o
t £ ~
E (dvt) <dv> - [o R} de (4b)

and Q and R are positive definite.

The parameter, €, is constant but not known precisely. However, 5
is assumed to be contained in a nonempty, closed, compact set, ©. Also,
the pairs, [F(9),G(8)] and [F(8),H(8)], are assumed to be stabilizable and
detectable, respectively, for each 6€©, The problem is to choose u, to
minimize a time average of the quadratic cost functional, (2). Equation (2)
becomes well-defined:

1 T
J(u_,8) = E [lim T [ (x/W x_+ u'W u)dt] , (5)

g T+NT0 txt

where Wx is positive semidefinite and Wu is positive definite.
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At time t, the controller has access to past output measurements,

so that

ut = U(tays s S f t) 5 t 2 0 s (6)

where Y is an admissible control strategy, chosen from a certain class, I.
Every element of Il must satisfy the following conditions [3]:

a) u must be causal,

b) u must be such that Equation (3a) has a unique solution that
is sample-path continuous,

c¢) u must be such that the cost function, (5), is well-defined.

When the parameter vector is known, the solution to this problem
is well-known. The controller is an optimal linear feedback of the least~
squares estimate of the plant states. Although an optimal controller can be
calculated for every 6€@©, the correct controller cannot be applied without
prior knowledge of 6. Therefore, when 6 is unknown, this strategy is no
longer feasible.

In the next two sections, two suboptimal solutions that are less
sensitive to var;ations in the parameter vector are studied.

The first solution is based on the assumption that any 6€© has
an equal chance of occurring. Therefore, a uniform distribution is assumed
over the set,®. Then u is chosen to minimize the average cost over O:

T

J(u) = E(E [ 11m¥f (xW x, + uW u)de]} . (7

6 w,v T

As a further simplification, u, is assumed to be linear with output feedback.

The problem is then reduced to a constrained optimization problem.
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The second solution minimizes the worst case performance; that is, ;
J = min max J(ut,e) . (8) :
u €I 0€O6 .
t
L. ]
When a saddle point exists, then (8) has the same solution as the problem, =
J= max  min J(u,0) . (9) N
FPEOG u €7 ’
t
Solution (9) is equivalent to using the optimal linear regulator for the .
0 €O that exhibits the worst cost. -
ﬁ
e
7
»a
=
e e T D e D T e T T




CHAPTER 3

A LEAST SENSITIVE SOLUTION

In this chapter a suboptimal solution is sought whereby a prior
distribution is assumed for 8 over the set, ©. The problem is solved here
for any continuous distribution. However, since the assumption that 0 is
equally probable over the entire set is made, the uniform distribution is
assumed in the examples. The problem then becomes one of choosing a control
to minimize the average cost over the entire parameter set. To accomplish
this purpose, the procedure described by Ashkenzai and Bryson [1] is applied
to a series of discrete distributions that converge in distribution to the
continuous distribution. This procedure restricts the control set to linear
controllers with output feedback. The assumption of a discrete distribution,
together with a linear control structure, reduces the probley to an optimization
problem with equality constraints.

Two examples are then considered for scalar plant and measurement
equations. One example has an unknown parameter in the plant dynamics, and the
other example has an unknown parameter in the control gain. The performance of
the two resulting solutions will be discussed. In particular, it is seen that
disturbance attenuation must be sacrificed as more parameter insensitivity is

desired.

3.1. Assumptions on Distributions

As discussed before, the assumption of a uniform distribution is

desired since the parameter is unknown within a given set. However, here we

O I SR S TG
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( only assume that a continuous distribution is given. To facilitate the solution

3 process, a series of discrete distributiomns that converges to the continuous

wn ML

At distribution is created. Specifically,

ol ¥ |

fc(e)’ a probability density function defined for 6€©

n f 8=9 i=1,...,N -
£ (o) = { 1 i 1
N 0 otherwise
‘:{i and also,
o Fy(8) > F (8) as N> =
:ﬂ% where FN and Fc are the corresponding probability distribution functions for
- fN and fc.
15,: 3.2. Restrictions on the Control Set
(Y-
B The control set is restricted to linear output feedback controllers
P,
- of the form:
u, = C(p)zt (10a)
§ 3 5 = +
2z = APz, + B(p)y, (10b)
.'::f
e where p is a vector of the entries in A(p), B(p), C(p).
[ 1
T As discussed in Ashkenzai and Bryson [l], if all the entries of ]

A, B, C were specified as parameters, the parameter vector corresponding to

the minimum cost would not be unique, since only the transfer functions from

Y, to u, are of importance. Therefore, the dimension of p must be the smallest 1
possible for the specified order of the controller and the dimensions of u, and Ver

‘
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To uniquely specify all the controller transfer functions, the following

dimension of p is required [1]:
DIM(p) = [DIM(ut) + DIM(yt)]DIM(zt) . (11)

In order to standardize the minimal realization of the control
parameters in A, B, C, the following block diagonal form of the control matrices

is used [1]:

Al 0 0
A= 0 A2 0 R (12a)
o o |-,
and the Ai's are 2x2 blocks of the form:
0 1
Ai = (12b)
Pa1i Pazi

except when DIM(zt) is odd, in which case the last Ai is a single scalar

parameter.
%1
B = EZ s (13a)
where
Bi = (pBli Pgoi * <) . (13b)
c=(c1|c2|...) (14a)

where each Ci has two columns:

................. Vel e el el e s e
............... SR T LT
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0 1 )

Peir Peat _
C = , (14b) 1
Yol Pest Peus o

-1)

. .\,'l
except when DIM(zt) is odd, in which case the last Ci has only one column:
8
1 :~j
pCli
C L = . (14C) q,
Peas ’
: "5
-l

With the assumptions of a discrete distribution and of a linear
block diagonal form of the controller, the problem can be reformulated as an

optimization problem with equality constraints. \3‘

3.3. Problem Redefinition and Solution

The system equatioms, (3), together with the specified block .
diagonal form of the controller, (10), form a new closed loop system: :‘_IE
dxt x, dwt
( > = S(8,p) ( dt + N(p) < > . (15) L
dzt z dvt -
with -
dwt '_~
E ( > =0 , (16a)
§vt 4
1
dw dw \~
E < t> ( ‘) = Vdt , (16b) .
dvt dvt :3
where S(%,p), N(p) and V are given by ?
yl
-
i |

B b T i e e L T e e e
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. F(6) G(8)C(p)
S(8,p) = > , (17)
B(p)H(8) A(p)

- K 0
8 N(p) = ( ) , (18)

0 B(p)L

Q O
(0
0 R

f,{ For discrete distributions, the cost functional becomes
. N
X J(p) = T £, J(o,,p) . (20)
b i i
i=]
Using (5),
g 1 T
] J;,p) = E [ lim L[ (xM x + 2C°(p)W C(p)z, )dt]
w,v T=>x" 0
h-..
x 1 T
" J(6;,p) = lim T [ {er[W_ E (x_ x))] + er[C ()W C(p) E (z,z))]}dt
X t t u tt
N T>>" 0 W,V W,V
u Let
e¥e  XeZp
X (6) = E (21)
W,V z X, z 2/
.
be the covariance matrix of X, and z,s and let
. W 0
R X
. W(p) = . (22)
_ 0 ¢ (pw . clp)
Then,
LT
- J(8,,p) = limEJ' er[W(p)X (8,)]dt

T+~ 0

.
Ly



...........

This expression can be further reduced [3],

J(8,,p) = tr[W(p)X(6,)] s (23)

where X(ei) for each 8, is the steady state covariance of x_and z, and is

i t t

the solution of the algebraic Lyapunov equation:

S(Bi,P)X(Gi) + X(Gi)S’(9i,P) + N(p)VN“(p) = O . (24)
Then,
N
J(p,X) = I tr[fiw(p)X(ei)] . (25)
i=1

Minimization of Equation (25) by choice of p, together with N Equations (24),
form an optimization problem with equality comnstraints.
A Hamiltonian function may be formed:
N

H(p,X,A) = iil{tr[fiW(p)X(ei)] + tr[A(ei){S(ei,P)X(ei) + x(ei)s‘(ei,p)

+ N(p)W (p) }]1} (26)
where A(ei) are N Lagrange multiplier matrices.
Necessary conditions for minimization of (26) by choice of p are

| ]
N Equations (24) plus N equations:

oH
ax(ei)

= A(8)S(3,,p) +5°(3,,PIA(3,) + £W(p) =0 (27)

and the gradient equations for p:

y 3s(8.,p) 38°(9,,p)
] S 3W(p) { . N
2y 121 er{[f, , + A(8)) s + 5, CHINICRY

(28)
b o3 Y ) + NGy M]}> -0,
Py 3Pj
for j=1,...,DIM(p).
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Note that (24), (27), (28) form a coupled system, with (27) adjoint
to (24). However, with a choice of p, Equations (24) and (27) determine
x(ei) and A(ei), and given x(ei) and A(ei), Equation (28) determines a
value of p that gives a stationary value of J in Equation (25).

The existence of a solution for continuous distributions as a limit
of the solutions of a series of discrete distributions follows from the
definition of the Lebesque integral and the uniqueness of p.

The covariance equations and the adjoint Lagrange multiplier
equations, (24) and (27), have unique solutions for all 6 €O, so that J(8,p)
is well defined by (23). Therefore, since (24) and (27) are linear, it is
possible to find expressions for X(8) and A(8) which are continuous in 6.

Then,
J(8,p) = tr[W(p)X(8)] . (29)

A Hamiltonian function may be formed,

H(p,X,A) = [ tr[W(p)X(8)]£(8)de
© (30)
+ é tr[A(8){S(8,p)X(8) + X(8)S”(8,p) + N(p)VN~(p)}1do
and
BB e (2¥R) x(0)1£(0)do
®; 6 P
+ [ ex{{ACe) asge’l’) +38°68,p) 4 9)1x(8) 8 (31)
o P °y
+ [ erin) (B2 wep) + npyv ElBlyyae
6 P %P
for j=1,...,DIM(p).
R R R . - 2 S e
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B. the properties of the Lebesque integral [5], (26) and (28) converge to
(30) and (31) as N+ =, Since Py is unique for each solution corresponding

to a distribution, £ (8),

pN -> pc as N> =

where pc is the §olution for the continuous distribution.

It remains to find a procedure for solving the system (24), (25),
(27), (28). An iterative procedure may be used. At each step, J(p) and
its gradients, é%ézl, can be calculated given a distribution, fN(e), and
a value of p. Thei, J(p) and its gradients may be used to determine a new
value of p for the next step. These steps are repeated until a value of p
is determined that gives a stationary value for J(p). A conjugate gradient

algorithm from the IMSL Library is used to perform the iterations. The

resulting routine is in the Appendix. See also References [4], [6] and [8].

3.4. Examples

The following one-dimensional system will be considered:

dxt = elxtdt + ezutdt + dwt (32a)
dyt = xtdt + dvt (32b)

dw 0 dw dw - 1 0

E = y E t t = de
dvt 0 dvt dv 0 1
and
1T 2 2

J(ut,f) = E [ lim T/ (xt + ut)dt] . (33)

W,V T+ 0
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In Example 3-1, 62 will be known and equal to 1, 61 will be uniformly

distributed with E6, =1. In Example 3-2, 6]_= 1 and 62 will be uniformly

1
distributed with E02= 1.
[ | The uniform distributions are of the form:
L a <8 <b
bc—ac c - - ¢
£.(6) = (34a)
0 otherwise
-~
- and
- ac+bc
- E(®) =1=— . (34b)
A series of discrete distributions that converges to fc(e) is:
‘ 1 (by-ay) 2(by-ay)
. NPT AT TR AR TN ol
fN(e)= (35a)
?; . 0 otherwise

and ays (bN-aN) are chosen such that

Ey(8)
N VAR (8)

EC(G) =1
(35b)

5y,

VARC(S)

ty
VS P SUNEFEALILNLY § VRGO X ¢

¢
e For the uniform distribution,U[ac,bC]9
b :
= rc_ 1 -
E,(9) =] —=— 9do :
a C .
c -
ac+bc E
E(8) = — (36) y
‘ 4
- :
- i

. .
PRI
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VAR.N(S)

VAR (9)

VARN(B‘) =

Ny
Eg(® = I §8
i=1
a_+b
Eg(8) = = (38)
2
2
N a_+b
~ 1,2 N N
g 2 ot (329
i=1
(b,-a,) (N-2) (b-a,)
1.2 .1 N 2N%2 1 ‘ NN .2 1.2
_NaN+N[-aN+—_(N-l)] + . Filag D) 17 + % by
2
) (aN+bN)
2

1 1\.2,./1_1\2 1
N’A)aN+<N 4>bN'2

aN
[ 2a(bra)  (bu-al)?
L1272, By N 2N
N! N
2

1]
/N

+
(N-D) (N-1) 2

2 4aN(bN-aN) 4(bN—aN)

1
+-la. + +
ik -1 Y
+ ... R
i 2(N-2)a, (b.-a.)  (N-2)2(b.-a.)? L
1 N N3N N 2N
ty|at -1 + 2
(N-1) )
- ]
(L _1)2 1 _13\2 1
<N 4)"1\1 + <N 4>bN 2 2Ny 1
N-2) 2,
M 3
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- . -
= .
19 5
R ]
.- .\ 2[1 + 2+ ... + (N-Z)]aN(bN-aN) -
. N(N-1)
\ [12 +22 4 ... (N-2)2](b -aN)2 -
i + N
[5_\. N(N-l) '
Let -{
.! :
L S, =0 .
S, =85 . +N o =
(’ N N-1 ,j
' 2 . .2 2,
- Then for N > 2, [17 + 2" + ... + (N-2)°] = SN-Z' Also, ..._J
v [1+2+...+(N—2)]=-(-§'2%w
e
& Therefore, - 4
“1
o =l_l)2 (}._l)Z_l
e VARG(®) =(§ - %) * ¥ "7 )P " 2 %Py K
S .
(N-2) N-2 2 i
+ —*a b +——— (b _-a,)
,h N NN ywen? NN 1
. 11 Sn-2 2
o VAR (8) = | = - & + ——= | (b,~a,) . (40)
- ARy N AT i nZ| NN
——
Then using Equations (35b) ;;
(b -a) 1
(b.-a.) = — (41a) 2
N °N 5 B
Aa(k- e ) .
N(N-1) >
(b,~a,;)
a. = 1-—2 N : (41b)

Given a continuous distribution, (34), Equations (35a), (39), (41) describe

the series of discrete distributions converging to fc(e).

L The block diagonal form for first and second-order controllers

are:
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( 1lst order - -
3 u =z
t ¢ (42) 2
dzt = plztdt + pzdyt
-
N The closed loop system is L
X\
: dxt 61 62 x, 1 0 dwt
= dt + . (43)
dz, Py P31/ \% 0 py/\dv, -
2nd order -
- z
u, = (0 1) <zlt> »
2t
dzy, 0 1\ /25, P3
d25¢ Py P2’ \ Z2¢ Py |
The closed loop system is N
dxt 81 0 62 xt 1 0
dwt
dzlt =| Pj3 0 1 2, dt + [ O Py (45) ;:
dvt
dzy, Py P1 Py/ \Z2¢ 0 p,
In Example 3-1 we set 62= 1 and consider 91 unknown. Let
i 105 oA =
X(8) = , MA(®) =
X2 X3 /\2 1\3

Then Equations (24), (27), (28) reduce to:
(24):
291X1 + 2X2 +1=20

2
Xy T2 X3 Ty = 0




. (27):

Y | Y S

26,0 + 2p,h,

Ay + (8 + PN, + oy = 0

+£ =0

e

" 2A2 + 2p1A3 + fi =0
(28):
= oH
—= X =
apl 2A22+2A3x3 0
BB oAX, + 20X, + 4Aps =0
apz 271 3™2 32
The gradient method discussed earlier will be used to solve these

equations.

However, since the procedure is a local one, an adequate starting

point must be found. One such point that has proven useful is the optimal
'. regulator solution for 61=Eel= 1. This can be found by solving the well-

known optimal regulator equations and transforming them into the block

diagonal coordinates. The optimal regulator for el= 1 is described by [3]:

g u, = - PR (46a)
d& = Kx dt + (1 - P - K)X dt + Kdv, (46b)

2 -PP+1=0 , P=1+7=208 (46¢)

2 =0 , K=1+V2=2.414 . (46d)

| & 2k - K"+ 1

DL o

-
2 a’al

But, in block diagonal coordinates,

.7

Z

t t
So the transformation, it = - %-zt is used, and
= - + - - -
dzt Pthdt 1-rp K)ztdt PKdvt

Comparing with Equation (43),

AN W = =3 5 e oy e B LRGP TS M

v
»
.
a
N
'
.
‘v
L
e
4
]
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3
f
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dzt = pzxtdt + plztdt + p2dvt s
we find
Py = - (L-Pp - K?
Py = - PK

With P = 2.414 and K = 2.414, the starting point is calculated as,

Py = - 3.828

p, = - 5.828

Optimal values for three uniform distributions are calculated. The

solutions for some approximating discrete distributions are also shown.

U[0.9,1.1] VAKE = 0.00333
N p1 p2 J
3 -3.8275 -5.8915 16.6942
7 -3.8273 -5.8917 16.69438
15 -3.8273 -5.8917 16.6949
continuous -3.8273 -5.8917 16.6949
U[0.7,1.3] VAR = 0.03000
N pl p2 J
3 -3.8505 -6.3474 18.2374
7 -3.8453 -6.3577 18.2717
15 -3.8443 -6.3595 18.2776
continuous -3.8441 -6.3600 18.2792
v[0.5,1.5] VARS = 0.08333
N Py P, J
3 -3.9481 -7.1189 20.9582
7 -3.9333 -7.1679 21.1293
15 -3.9299 -7.1767 21.1605
continuous -3.9289 -7.1791 21.1693

Note that when the variance is small, convergence to the continuous

solution is very rapid, as can be seen especially in the U[{0.9,1.1] distribu-

tion, where four significant figures are achieved at N=3. However, the
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convergence rate decreases as the variance increases, so that for the
U[0.7,1.3] distribution four significant figures are not achieved until
N=15, while for the U[0.5,1.5] distribution even more exact distributions
are required for the same precision.

Once optimal parameters for a particular distribution are found,
it is interesting to see how the actual cost varies as a function of 6. It
is desired that the cost incurred for a particular 6 be as close as possible
to the cost incurred if the optimal regulator was used for that value of 6.
Therefore, defining JLS(G) as the cost incurred by the least sensitive

controller, and J (8) as the cost incurred by an optimal regulator designed

OPT
for 6, a performance measure that may be used is a plot of JLS(G) - JOPT(G)
versus 6. Some interesting properties of these systems can be discovered.

Figures 1 to 3 show J, ,(®) - JOPT(G) for the three distributions

LS
considered. From these curves, several properties of the least sensitive
solutions can be discerned.

1) As can be expected, the relative cost increases as the true
value of 9 deviates from the mean. This is a desirable property since less
performance is sacrificed as the true value of 6 moves toward the nominal
value.

(6) was achieved at

2) (8) is not achieved at any 6. If

JopT JopT

a value of 9, it would be an optimal regulator for that 6. Therefore, the

least sensitive solutions are not optimal for any 4. Also, this fact shows

that disturbance attenuation is always sacrificed to achieve less sensitivity.
3) More disturbance attenuation is sacrificed as less sensitivity

is desired. This property may be made clearer by investigating the perfor-

mance at the mean:

bk S
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Distribution VAR® JLS(I‘O) - JOPT(l.O)
U[0.9,1.1] 0.00333 0.03
U{0.7,1.3] 0.03000 0.31
U{0.5,1.5] 0.08333 1.3¢9 .

As can be seen, performance at the nominal value of 9 deteriorates as the
variance of 6 increases.

4) The least sensitive controller is biased in the sense that
the minimum value of the relative cost occurs at a value of ¢ that is higher
than the nominal value. This bias may be quantified by calculating the

value of 6 at the minimum as a percentage of the full deviation possible.

Distribution Bias Full Deviation
U[0.9,1.1] 15% above 0.1
Uf[0.7,1.3] 33% above 0.3
U{0.5,1.5] 457 above 0.5

Figure 4 shows J (8) as a function of 9. As can be seen from this figure,

OPT

the controller is biased toward 9's that are associated with higher costs.

Also, the percent bias increases because J (8) increases at an increasing

OPT
rate. :a
Second-order controllers may be calculated for this example using ]
the same algorithm. To calculate a starting point, a comparison is made ;?
between the transfer functions of the first and second-order controllers: i

Py

U(s) _ Py
Y(s) s - Py

first order:

o

.
it

It

P4P
351
+ ==
(s > )

U(s) - 4
Y (s)

second order:
2 _ +
Py T PPy T Py

(S"Pl) S+pl-p2+

s+p - P

v ..
U YR

L
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Using the starting point for the first-order controller, a starting point

for the second-order controller can be formed by matching the two transfer

functions. Let

12 (second order) = Py (first order)

P, (second order) = Py (first order)

cancels the zero.

- controllers:

Then, P, and P, can be chosen

Therefore,

so that the second pole is stable, and nearly

using the starting point for first-order

P; = - 3.828

Py, = - 5.828
) set
B p, = - 3.828 N

p, = - 5.828 -
u Let Py =Py = 1, %
: then Py =Py - 1 =-4,828 . 1
. P,P

Then, so that s + Py - P, cancels the zero, s + —Er—— , set 0
4
® P3Py
P
4
P, = — = 1.522
3 Py

:T Therefore, the starting point for the second-order controllers is:

Py = - 3.828
o P, = - 4.828

Py = 1.522
; P, == 5.828 .
rs
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- . .
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Second-order controllers were calculated for the same distributions.

The results are summarized below.

U[0.9,1.1] Py Py Py P, J
1st order -3.8273 -5.8917 16.6949
2nd order ~4.4948 -5.0194 1.5411  -5.9062 16.6948
U[0.7,1.3] Py Py Py P, J
1st order -3.8441 -6.3600 18.2776
2nd order ~5.5380 -5.3948 1.6626  -6.4557 18.2722
U[0.5,1.5] Py Py Py P, J
lst order -3.9289 ~7.1791 21.1693
2nd order -7.4618 -6.0202 1.8371  -7.3618 21.1397 .

The percent improvement in J may be calculated:

Distribution ZAT
U[0.9,1.1] 0.00067%
v[0.7,1.3] 0.0295%
U[0.5,1.5] 0.1398%

These figures show that the improvement found using the second-order control-
lers is very low, but the improvement increases as the variance of 8 increases.

Figures 5, 6 and 7 show a plot of JLS (first order) - (second order) as

JLS
a function of 7 for the three distributions. These curves show that this
second-order controller does not make improvement over the entire range of =.
However, it can be seen that the improvement occurs for 5's that are
associated with higher costs.

In Example 3-2, %1= 1 and ?2 is considered to be unknown with

E62= 1. Using the same method as in Example 3-1,with the same starting points,

optimal values for first and second-order controllers are calculated.

Al
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U{0.9,1.1]

first order
second order

Uu[0.7,1.3]

first order
second order

U[0.5,1.5]

first order
second order

VARS8 = 0.00333

Py
-3.8031 -5.
-3.4583 -4,

VARS® = 0.03000

Py
-3.6087 6.
-4.1535 =5

VARS = 0.08333

Py
-3.2658 -7
-5.6600 =6.

Figures 8, 9 and 10 show plots

order controllers. Basically,

8707 16.7323
7587 1.5493 -5.9083 16.7314

P, Py P, J

2470 19.0127

.1693 1.7693 -6.5897 18.9244

.2651 25.8909

1005 2.2744  -8.2686  24.9534

of JLS(G) - JOPT(G) versus 9 for the first-

the conclusions here are the same as in

Example 3.1, and only a few differences will be noted here.

1)

The relative cost for the parameter in the control gain is,

in general, higher than the relative cost for the parameter in the plant

dynamics.

2)

These controllers are biased below the mean. To quantify:

Distribution
U[0.9,1.1]

U[0.7,1.3]
U[0.5,1.5]

Bias Full Deviation
15% below 0.1
427% below 0.3
b6% below 0.5

Notice also that these biases are greater than in Example 3.1.

Figure 11 shows that J

OPT(9) is greatest for parameter values less

than the mean, which shows why the biases are below the mean. Also note that
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f:
Ii JOPT(S) is generally greater than in Example 3.1, and increases at a faster
) rate than in Example 3.1, thereby explaining why the relative costs and biases
L
N are greater than those in Example 3.1.
l' For second-order controllers, the degree of improvement is also
l greater than that of Example 3.1.
: Distribution AAJLS (Ex. 1) AAJLS (Ex. 2)
- U[0.9,1.1] 0.0006% 0.0053%
Uf0.7,1.3] 0.0295% 0.46447
v[0.5,1.5] 0.1398% 3.6217% .
- Note that in this case, the improvement can become significant although still
not very great.
Figures 12, 13 and 14 show JLS (first order) - JLS (second order)
- for this example. As seen before, a savings is not made over the entire

parameter range, but the improvement is made for 6's associated with higher

- costs.

3.5. Conclusions

r To conclude, it has been shown how the method of Ashkenzai and
Bryson may be used to find least sensitive controllers for systems with

RS parameters described by continuous distributions. The rate of convergence

RO T8 &
PULTGF B N o

of the solution is very rapid although it slows down as less parameter

_j

sensitivity is desired.
. The performance of the least sensitive controllers was discussed. J
- It was concluded that the performance of the system decreased as the distance :
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Figure 14. JLs(lst order) - JLS(an order) vs. 8§
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of the real parameter from the nominal value increased. Disturbance
attenuation was seen to be sacrificed as less parameter sensitivity was
desired. Also, the controllers were biased towards those values of ©
associated with higher costs. Finally, it was seen that second-order

controllers did not, in general, demonstrate much improvement over the

first-order controllers.
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CHAPTER 4 = |

A MINIMAX SOLUTION

In this section, we seek to find the optimal controller for the

value of the unknown parameter that corresponds to the worst-case model.
This problem is characterized by (8): -

J(uo,eo) = min max J(u,,8) R -
utEH s EB )

where J(ut,e) is given by (5). A way to calculate the solution is to find
the optimal regulator for all possible models and then to maximize the
corresponding cost over the parameter set. This problem is characterized by ;f

(9): -

J(u ,6 ) = max min  J(u_,6) ) -
0 [o] eee Uten t

For the solutions of these two problems to be equivalent, a

A

saddle point must exist at the solution point. Looze, Poor, et al. [7] have
shown that a saddle point exists when the uncertainties are in the second-
order statistics of the noise. However, some additional convexity assumptions
are needed for the parameter set, ©, in this proof. We have made an attempt
to use the same method to show the existence of a saddle point under the
current assumptions. However, this cannot be done since, as seen later in

the case of scalar systems, the saddle point does not exist for all types of
parameter sets under consideration. Therefore, we state what conditions must

be satisfied in Theorem 2, and then for scalar systems, we find the largest

sets such that the saddle-point condition holds.
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The examples from the previous section are then considered. The
minimax solutions for these examples are calculated, and using the results
for scalar systems, the minimax solution is shown to enjoy the saddle-point
property for the sets under consideration. The performance of the minimax
controller is compared to the performance of the least sensitive controller.
It is generally seen that the least sensitive controllers exhibit superior
performance over a wide range of parameter values in the set.

Finally, we include a note on the notation used here. A subscript
"a" denotes that the matrix in question is a function of the unknown parameter

vector. A subscript of "o'", or no subscript, indicates that the matrix is

evaluated at the maximin solution.

4.1. The Maximin Solution

To solve (9), the optimal linear regulator is determined for all
5€0, and the resulting cost is maximized over €O, The optimal linear

regulator is [3]:

1

uy, = - wu GePext (47a)
dx = (F. - W ig p yx. dt + a‘(LRL‘)'l(dv - H.x. dt) (47b)
t ) 5°u "8 8%t 579 "t 87t
. -1,. -
FiPy + P,Fy - P.GW "GJP, + W =0 (47¢)
3 . -1 .
Folg + I,Fs - L H(LRL ) TH.I, + KQK” = 0 . (474)
The optimal cost is
. -1.._ .
J(u,,9) = tr[PKQK" + P G.W GP.Z,] . (48)
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Maximizing (48) over 6€ 6 with Pe and Ze given by (47c¢) and (47d) gives the

maximin point, (uo’eo)° The cost at this point is

— » A_l‘
J(uo,eo) = tr[PoKQK + PoGowu GOPOZO] o (49)

In order to investigate the existence of a saddle point at this
solution, an expression for the cost of the maximin control at other values
of 6 is needed. By applying the control, (47) evaluated at 60, to the system,

(3), the following closed-loop model is formed. Let

F, -cew;lG‘P

S = 1 -1 -1 (50a)
IH”(LRL") Hy F - GW_ "GP - IH"(LRL )H

X K 0

N = ( -1 (50b)
0 - IH°(LRL") L

X W 0

W= X 1 (50¢)
0 PGW_"G°P .

Then the closed-loop model is

dxt xt dwt
) = §( " )dt + ﬁ( > . (51)
dx X dv
t t t
The corresponding cost is (under the assumption that S is a stable matrix

for all 8€© — which will be justified later)

I(u,0) = tr(W X) , (52)

where X is the positive definite solution to

§X + 8S° + RVN" = 0 . (53)

T I P T IR L P B NERP e T - . . e e J
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‘ B
- Then Equation (52) reduces to
- _ N -1 n
R J(uo,e) = tr[wxXl + PGWu G Px3] . (54)
an
K Also, (53) leads to three equations:

FX + R F - GW cPR: - %.Pow lg: + KQK” = 0 (55a)
_ g%1 T f173 T Befy 2 T %27y B a
- - -1 . - P - - -1.. . = .

FGXZ - Gewu G PX3 + XIHS(LRL ) lHX + XZ(F - GWu G’P - IH"(LRL") lH) =0 (55b)

-1, . PN NN N -1.. . NS

(F - GWu G’P - TH (LRL") H)X3 + X3(F - qu G’P - ZH"(LRL") "H)
- 1 L. X -1 (55¢)
l' + ZH"(LRL") "HI + IH"(LRL") HBXZ + XiHé(LRL') HE = 0

Equations (54) and (55) represent the cost incurred by the maximin controller

for models that correspond to all the different parameter values in the set.

4.2. The Minimax Solution - Existence of a Saddle Point

| ¢
) The solution to the minimax problem, (8), exists, and is equal
to (9) if a saddle point e> 'sts at the solution, J(uo,wo). The saddle point
is characterized in the following theorem.
Theorem 1 [2]: There exists a pair (uo,eo)E T x © satisfying the saddle-point
condition:
- g 3 3 € I€0 5
J(u,5) < Ju,2 ) < JCu,3)  ¥u €T, 3 , (56)
ol
S if and only if the values of (8) and (9) are equal.

.
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It is necessary to show that condition (56) holds. The right-hand

side follows immediately from the fact that uy is the optimal linear regulator
for 80. Looze, Poor, et al. [7] prove the left-hand side for their case by
establishing the existence of the maximin solution to (9), and then showing
that the condition that the Fréchet differential of J(ut,e) at (uo,eo) is
nonpositive for all 6€© is equivalent to the left-hand side of (56).

To follow similar logic in the present case, a further restriction
must be made on the parameter set. Specifically, we assume that 6 may be

8., and 8., where the following conditions hold:

split into three vectors, GF, G "

Fy = F(6p) 8¢ €O

- €
Gy = G(8y) 8,€9; (57)
Hy = H(8,) 85 € Oy

and GF’ 9G and GH are disjoint, convex sets, and GFx GGx @H = 0.

Since the pairs (Fe,Ge) and (Fa,He) are stabilizable and detectable,
respectively, and since ue is an optimal regulator, J(ue,e) is bounded and
continuous in 3. Therefore, since © is compact, the maximin solution to (9)

exists.

We now make the dependence of J(uo,e) more explicit:
J(uo’g) = J(uO’FB’Ge’He) s (58)

and we will refer to (Fe,Ge,He) as the point corresponding to (8). Let

(uo,ao) = (uO,F,G,H) be the maximin solution. Then the Fréchet differential

of (48) with respect to F“’GG’HS at (F,G,H) must be nonpositive in every

direction into ©. The Fréchet differential of (48) is now calculated with

respect to each of the parameter vectors.
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We start with Equation (48),

) -1,
J(u ,F G Ho) = tr[P.KQR™ + P.G.W "GP L]

The differential of J(uo,Fe,G He) with respect to FH at (F,G,H) is

g

1 1

1

8J(u_,F,G,H ; 4F) = tr[sP KQK~ + SPGw; G°PL + Pcw; c‘5P24-PGw; G'P:I]

(59)
where 6P and 8I are the Fréchet differentials of Pe and Ze at (F,G,H), and

can be calculated using (47c) and (47d).

For &P we use (47c):

FP+PF-PGHNicP+W =0 :
u X B
. . -1 . -1, e
OF’P + F76P + GPF + PAF - SPGW "G'P - PGW_"G'SP = 0 ]
(F - Gw;lG‘P)‘SP + SP(F - Gw;lG‘P) + AF°P + PAF = 0 . eff
. -1, ]
et A=TF - qu G'P. Then, 1
5P = [ &® F(aFP + Pam)eldt . (60)
0

For 35 we use (47d):

Ff + IF” - EH‘(LRL‘)—lHZ + KQK” = 0

AFS 4 FA3Z 4+ 3IF” + AFT - SZH'(LRL')-IHZ - ZH‘(LRL‘)'lﬁéi =0
(¢ - EH‘(LRL')‘lH)sz + 8L(F - zn‘(LRL')'lH)' + AFT + TAF = 0
Let B = F - :H‘(LRL’)'LH. Then,
o - R 4
io= eBL(AFZ + ZLF‘)eB tat . (61) "i

0
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Substituting (61) and (60) into (59),

1 1

8J(u_,F,G,H ; OF) = tr{SP[KQK" + Gw; G°P: + zpcwalc‘] + [Pcw; G°Pls:}

-~

= tr{/ 2t 1aF P + PaF]eltdekor” + GwzlG‘PZ + zpcwglc‘]
0
+ [Pcw;lG’P]f eBtiarzs + £aF-led tde}
0
R . .

er{[AF"P + PAF][ **[kQK" + G 'GPz + 1PoW TG le" tar
0 .

+ [AFZ + 24F°)f eB t[PGWLIG’P]eBtdt}

0
83(u ,F,G,H ; AF) = 2tr{[MP + ZMFZ]AF} (62)
(F - Gw'lc‘P) + (F - GW—lG’P)‘ + KQK* + owleps + zraw 1g” = o (63a)
u %Fl MFl u u u
(F - TH*(LRL") 1w - + M_.(F - SH (LRL™) "TH) + PGW 1GP = 0 (63b)
MFZ MFZ : u *

Equation (62) with Equations (63) describes the Frechet differential of

J(uo,Fe,G He) with respect to F, at (F,G,H).

8’ 8

In order to find the differential with respect to G, at (F,G,H) we

2
again start with (48):

- -1_.
J(uo’FG’Ge’HG) = tr[PeKQK + PeGeWu cepeze]

Then, using (47c¢) and (474),
J(uy,Fy,Gy,Hy) = tr[W I, + P 5 H(LRL) lneze] :

The differential of J(uo,Fe,Ge,He) with respect to G, at (F,G,H) is

8

53(a ,F,G,H ; 4C) = tr{sP[IH”(LRL") tHI]} (64)

where 6P is now the Fréchet differential of Pe with respect to G% at (F,G,H),

and can be calculated using (47c¢):

(L

cid)

1:1




f-
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. -1.. -1, -1, . -1,

F"6P + GPF - SPGW_"G'P - PAGW_ G°P - PGW "4G’P - PGW_"G*SP = 0
-1 ... -1.. -1 -1,... ]

(F - GW_"G”P)“8P + SP(F - GW_G"P) - PAGW ~G“P - PGW ~AG’P = 0

u u u u

op = [ * F1-paci le P - PoW lac-Pleiar . (65) =3
0 -.'-u‘
o)
Substituting (65) into (64) :::
8J(u_,F,G,H ; AG) = tr{? At -1 -1 At -1 =
o’ 2 o € [-PAGW "G"P - PGW "AG"P]e” dt[fH"(LRL") "HI]} PR

= er([PacW 'GP + poW_tacP1[ e*[-2n” (LRL") THI]e® Far) I
0 <
=
63(u,F,G,H ; 8G) = 2tr{ (W G"PM P1aC) (66) =
-1, S T
(F - GW_IG'P)M, + M (F - GW.'G'P)" - IH"(LRL) HI =0 .  (67)

Equation (66) with (67) describes the Fréchet differential of J(uo,Fe,Ge,He)

with respect to Ge at (F,G,H).

In order to find the differemtial of J(uo’Fe’G6’He) with respect

to H8 at (F,G,H), we again start with (48). Then,

1

83(u_,F,G,H ; OH) = cr{[Pcw; G’P)ér} (68)

where 8L is now the Fréchet differential of I, with respect to He at (F,G,H),

8

and can be calculated using (474):

F&% + SIF” - 6ZH(LRL®) 1HZ - ZoH-(LRL®) YHI - tH”(LRL®) laH:

- zn’(LRL‘)'luaz =0

(F - TH*(LRL") "MH) 82 + SI(F - SH”(LRL") TH) - ZaB”(LRL") tus
- tH (LRLY) YaHE = 0
sz o= [ eBt(-zan-(LRL) " lur - tHo@RLY) lamzje® far . (69)
0




52

Substituting (69) into (68),

~

83(u_,F,G,H ; 0H) = tr{[PGW;lG‘P]f Bt (-zan-(LRL") “YHz - zm-(LRL-) lamz)
0 ~

o eB‘tdt}
= tr{[ZoH”(LRL") HD + ZH‘(LRL‘)—lAHZ]Z eﬁ‘t[-PcwglG’P]eﬁtdt}
83(u_,F,G,H ; 8H) = 2tr{[zMHzH‘(LRL')'1]AH} (70) :
(F - tH"(LRL ')'111)‘MH + M (F - IH(LRL") "1H) - Pcw;lc‘P =0 . (71) 3
Equation (70) with (71) describes the Fréchet differential of J(uo,Fe,Ge,He) .]

with respect to He at (F,G,H). This completes the calculation of the Fréchet

differentials.

Consider an arbitrary point, (Fe,Ge,He), in ©. Since GF, @G and GH jj

are convex, the line segment joining (F,G,H) and (FS’GG’HG) is in © and

(AF ,AG,AH) = (Fe -F, G, - G,H6 - H) (72)

8

is a direction into ©. Since (F,G,H) is the maximin solution, differentials

(62), (66) aEd (70) are nonpositive. If by setting differentials (62), (66) 1

and (70) nonpositive we can show that the left-hand side of (56) is true,
then a saddle point exists. This can be summarized in the following theorem.
Theorem 2: Let the Fréchet differentials (62), (66), (70) corresponding to

the maximin solution be nonpositive:

er{[Mp,P + M, 1(F, - F)} <0 VEE O, (73a)
er{[W, G'PM_P] (G, - G)) < O ¥GE 8, (3w
er{[TMsH”(LRL) T1(H, - B)} < 0 VHE®, (73¢)

where MFl’ MFZ’ MG’ MH are given by (63a), (63b) (67), (71).
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Consider the left-hand side of (56) in view of (54).

J(UO’FB’GS’HG) < J(uo,F,G,H) (74a)
» tr{W X, + poW 1G°PR. ] < tr[W &, . + peW PR, ] (74b)
- X186 u 387 ~ x10 u 30
where Xl& and x3e are given by Equatioms (55), and XlO and X30 are given by
Equations (55), evaluated at 6 .
- o
L If (73) implies (74), then a saddle point exists, and the solutions
- of (8) and (9) are equal.
= We have shown that (73) is true since the maximin solution exists.
Also, the right-hand side of (56) is known to be true. Therefore, if we can
show that the left-hand side of (56) is true using (73), Theorem 1 can be
|' used to establish the existence of a saddle point and the equivalence of the

two solutionms.

Looze, Poor, et al. [7] take advantage of the fact that the system

l parameters are known, and by use of the transformation, e, = X, - ;(t’ an error 4‘?
N model can be formed. Using this error model, an expression for J(uo,e) can %
o 4
:} be found such that the corresponding equations to (73) and (74) are identical. j
. However, under the present circumstances, this comparison is not possible. #

This is true because uncertainty in the system parameters makes the formation %

of an error model impossible. Therefore, Equation (74b) is dissimilar to ;

Equations (73), and it is not immediately apparent that (73) implies (74).
Indeed, as we see in the case of scalar systems, (73) does not imply (74) for ]

all types of sets in the class under consideration. We now undertake the

r
S P LAt

study of this problem for scalar systems, and characterize all the sets in

the class under consideration for which the saddle point exists.
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4.3. Scalar Systems

The existence of saddle-point solutions for scalar systems will be
studied for a large class of convex sets. The simplicity of scalar systems
allows for a more thorough investigation of the properties in Theorem 2, and,
therefore, we gain better insight into the structural properties of the
problem at hand. First, we will show how Equations (73) may be used to char-
acterize the maximum solution for the class of convex sets that satisfy the
stabilizability and detectability assumptions. Then we will show that
Equation (74) can be verified only for certain sets within this class.

First, the class of convex sets will be described. For scalar
systems, the parameter vector (Fe’GS’He) can have at most three scalar
parameters that we represent by (fe,ge,he). Convex sets that satisfy the
conditions, (57), consist of three sets of intervals on the real line. To
satisfy the stabilizability and detectability assumptions we require that
these intervals do not contain the point zero. To allow for the possibility
that one or two parameters are known, we allow one or two of these intervals
to be reduced to a single point. Therefore, the class of sets we consider

is © such that:

X =1{0:;:0-= eF U GG U GH} . (75)
and GF, GG’ OH are each one of the following:
@F = {feE [fa,fb] fa < fb < 0} (76a)
or @F = {fee [fa’fb] 0 < fa < fb} (76b)
or @)F = {fe = f feER , f#0} (76¢)

oo
detete

o

oo P R ¥ C "‘i"i e




or

or

or

or

and we need not consider the trivial case © = {(f,g,h)}.

assumed independence of f

with respect to £

The maximization of (48) over each set in the class, X, can be
performed by using its Fréchet differentials in the Condition (73) of
Theorem 2. We will consider each condition in (73) one at a time.

consider Condition (73a) for ESGEGF and with OF as in (76a) or (76b) and

o *8g°

0, = {gslg,-8,)

Gb = {ggs[ga,gb]

GG = {g8=g
O = (hElh oh, ]
GH = {th[ha,hb]
GH = {he = h

9°8g

noting that Case (76¢) is trivial:

(mpy

2(f - g-%g) m,, + k2

2(f -

P + ZmFZ](f8 -

f) <0

w Fl
u

2 2
b, L 82
2

w
r u

8a © By
0 < ga
g €R

ha <Py
0 < ha
h € R

(S
er @F

q+ 2 3;E£ =0

and he one at a time.

]

<

<

9

<

<

9

o}
8,
g # 0}
0}
hb}
h # 0}

Equations (80) and (8l) can be solved by direct division:

) 4 2801
-(k ) )
u
2
2(f - BB
w

Note that the

(77a)

(77b)

(77¢)

(78a)
(78b)

(78¢)

and he allows us to maximize J(uo,fe,ge,ha)

First,

(79)

(80)

(81)

B e, R AR
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Lr

We know from the properties of optimal linear regulators that (f - %;z) and
2 u

(f - EEE) are stable, which in this case means they are strictly negative.
L7r
Therefore, mFl and n, are positive, and mFlP + mFZZ is positive. Then,

Y |

condition (79) is equivalent to
€ 2
£, < f£ er GF . i

The only such point, f, in sets QF in (76a) and (76b) is at the upper

lae 8

boundary. That is,

£ = £ for £,€ £ ,f,] £, < £ <O (82)
f
f = fb for fee [fa,fb] 0 < fa < fb . (83) 4
Now consider Condition (73b) for gBEEGb and with @G in (77a) and i
(77b) : ;
E" = m.(g, - 8 20 ¥g, €9, (84)
r‘.'_-',': u ‘
L 2 2.2
S 2(f - g_P) m. - hi _ 0 (85)
R w G 2
SAGH u L°r
N ]
E; . (85) can be solved by direct division:
E 2.2
o hoE
ﬂ!;» lzr
.r“;:' mG - 2
e 2¢ - BBy
A wu
‘
ey
)

- P .
PR - - N t.
n et - - P o

PR A P R A, RN - T e S . N . .
b Wl TR TR T i a R P N . T U O U P T T T T T T VT




WWWWWWW S Te e e e e LT T
! .

i

57

2
Since (f - %;20 <0 , m, < 0.

G Now consider @G in (77a).

u 2
g < 0, and therefore %?— m, > 0. Then Condition (84) is equivalent to:
u
8y < 8 Vg, €6,
2P2
Therefore, g = gb. With GG in (77b), g > 0, and therefore g;-— m, < 0.
u
Then Condition (84) is equivalent to:
8g 2 8  ¥8,€6; '
Therefore, g occurs at the lower boundary, 8, Summarizing the results:
= 86
g8 = g for g, €[g ,g) 8, < 8 <0 (86)
= 87
8 =g, for g € [g,,8,] 0 <g, <8 (87)
Now, comsider Condition (73¢) for he€5@H and with GH in (78a)
and (78b):
hr?
=2 - €
> (hy - h) <0 Vh, €6, (88)
' o
22 2P2
2(f - -—2—-) m, - B——w =0 (89)
L r u
(89) can be solved by direct division
2,2
8P
w
- u
™y 125
2(f - ———0
2 r
e L D S T
ML.AALML‘LAM_\‘_

. .‘ - LLL*LIL&L_L;.A‘_M;AA‘.A\_L\‘

In this case
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(i
;- hZZ
Since (f - 3 ) <0 m, < 0. Now consider GH in (78a). In this case
L°r 2
h < 0, and therefore h%— my > 0. Then Condition(88) is equivalent to:
Lr
hg <h Vhy €0y

Therefore, h occurs at the upper boundary, hb. With 9H in (78b), h > 0,

2
and therefore E%—-mn < 0. Then Condition (88) is equivalent to:
Lr
<
hy > h Vhe GH

Therefore h occcurs at the lower boundary, ha‘ Summarizing the results:

=
]

hb for hee [ha,hb] ha < hb <0 (90)

(91)

=
(]

ha for hee [ha’hb] 0 < ha < h

b

(82) and (83), (86) and (87), (90) and (91) are the solutions for sets (76),
(77) and (78), respectively. The solution for sets in class X can be found by
applying solutions (82) and (83), (86) and (87), (90) and (91) one at a time
whenever a parameter is unknown. This completes the solution of the maximin

problem for sets in the class, x.

We now wish to verify the saddle-point condition in Theorem 2 by

showing the relation, (74), holds. It will be seen that saddle points do not

exist for all sets in the class, x. However, we can find a class of sets

.
Lt l"‘ iy -".‘ ."n' 4

S @l s e
St did S e

within X for which (74) can be verified. Recall that the relationm, (74),is

part of the saddle-point condition, (56), in view of the expression for

1
EH

J(uo,e) in (54). Therefore, to verify (74) we need an explicit expression

ryrvw il ovrw
[
: .,

h.). Towards this goal we start with (54),

for J(u ,3) = J(u_,f,,8,,h,
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N gZPZ N
JCu sfy.845h0) = WX, + v Xq

and X

1 and i3 are solutions of Equations (55):

2feX1 - w

2t - 2P hZE 2h thz 2.2 )

wu L°r 3 er L°r

|
{
o33
+
+
[
o

Using (93),

I
]
+

Using (95),

er 22r 2
2 h2" 2 2
2(f - 2P _ £y
w 2 w
u L°r u ir

X3 =

Substituting into (94), X may be found.

2

gngPh;hZ

gegPhZZZ 2

* 2 . - T3 =0
2w 2e(t - B2 _ hE, £,2¢°r
u w

u LT

- At et
e

: TS T T SR TR SN
. SR y PN e e e e
R CGA LS G, SRS R O Ot LA N

R S e

(92)

(93)

(94)

(95)

(96)

(97)

B e N A SV YR R

e

[

o




o

Solving, and after some rearrangement,

2 2
2 _&Pp _h1
-f gegphziz hghZk™q (f4~ 7 )
u 2°r
2 + 3
A 2w br 20°r
2 2 2 2 2 g.gPh_hI
_gP _n: _gP _hZ g€ g
(fg + £ -5 5 ) Eg(f - % 7 )t 7 )
u 2°r u L°r w i'r

u

We substitute (98) into (96) and (97), and then into (92) to find an

expression for J(u s 6,ge,h ). The final result is
J(u,.£,,84,hg) = 2 2 - 2 2 g.gph h
(g, + £ -8B BIye (¢ &2 _NZE 87 5
8 w 2 8 w 2 2_
u °r u L°r wuz T
( h, 2,2;2,2,2, 20 2 2p2h222w ¢ gph he 22 2.2
5 Ehalt: £rh e
3 + 73 £ 4 5 v K q+ (99)
22 rw 2w L°r 2w °r L 2 r
- u u
22222
£5g°Ph s f 2222 2 2
+ _—+i(wk2q+&_&‘_)(f_u_b_£)
2 2 X 2 w 2
2w 2°r w i'r u Lr
u u
2
+kaq (f - - -h—z-ﬁ-:-)2
° 2 wu er

The properties of Equation (99) may be used to investigate the
saddle-point properties of the maximin solutions. We can show that (99)
is decreasing away from the maximin solution locally, so that there always
exist some sets in X such that (74) is verified. We can also show that as
the sets get larger the saddle-point condition breaks down in some cases,

since, as we move away from the maximin point, (99) may start to increase

again until its value becomes greater than the maximin value.
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To show that (99) is decreasing away from the maximin solution,
we first note that since J(uo,e) in (48) is the optimal cost at any value

of 6, (99) is bounded below by (48) at any value of £ and hec From this

08¢
fact, and the fact that at the maximin point (99) and (48) are equal and
continuous, the derivatives of (99) are equal to the derivatives of (48)
at the maximin point. The derivative relations (79), (84) and (88) in view
of (80), (81), (85) and (89) indicate that (99) is decreasing as we move
away from the maximin point into a set in X. Therefore, there exists a set
belonging to X in which (99) is decreasing in all directions from the
maximin point into the set. Since (99) is continuous in this set, (74)
is satisfied, and therefore this is a set in X such that a saddle point
exists.

We have shown that there exist sets in X such that the maximin
solution satisfies the saddle-point condition. In the following, we show
that for a given maximin solution, a largest set in the class, X, can be

found such that the saddle-point condition holds. This set is found by

examining the topology of the level surface,
J(uoyfeage9he) = J(uoafsgsh) [ (100)

We show that this equation describes the boundary of the largest convex
compact set such that the saddle-point condition holds. However, this
set does not belong to the class, X, under consideration. Therefore, we
find the largest set in X that is contained in this largest convex set.

We find that there are never any limits to the size of ®_, but there are

F’

always limits on the size of @G and @H.
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;1 We start with Equation (100) with J(uo,f,g,h) given by (49):
2
_ eps B2
v J(uo,fe,ge,h ) = (k"qP + w )
'\.' u
9 2y 2ol g Es8gEPhhI ,  BggPh nza’
T = (K°qP+E—5) (FSA + ———— + £ A" + ———)
. w ) 2 9 2
a u v L°r wujl T
gegPhehZ
(g + D (Eh+ =)
y w
- u
where
- 2, 2
A=f - 'g“P'wu > (101)

Using (99), and cancelling out the common denominator on both sides we obtain

the result:

2 2 2

i3~ K £y + K £, + Kyf g h + Kogh, + Kby +Kegy + K, =0 (102)
- with

J

- 2.2

S R, = IS hzz + (K p+—53? Ly (£ %;5 355) (103a)

2wu2 r u u L°r
2.2.2.2 2 2 2 2
) 2 T

e: K, = 3w kq+EE hlye-&82 ) + (kqp+ B Dy (s - B h 2,2
WD w L°r u °r

o u

o (103b)
o
£ K, = BB (2 P4—3—£——) (103¢)
w Lr u

; nr 22, 222 ) 2 p2c ]

- k, = B2 —(w Wqe BEED I, 4o qp+5———><f -ER A (103d)

w i'r w l r u rr

g

s

‘.
L7

.
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2.2.2.22
R, = Phik (103e)
2wu2 r

gZchzzzwx
K, = —a— (103f)
6 2.2
2wu2 r

w _k'q 2 2

_ X _ 8P _hZ?2

K7 = (f ” 2 ) (103g)
u Lr

Equation (102) with (103) describes a surface in R3, part of which describes
the boundary of the largest convex set such that the saddle-point relation,
(74), holds. This surface, of course, contains the point (f,g,h) and turns
out to be hyperboloid in shape, although Equation (102) is not quite
quadratic. To describe this surface precisely, we will investigate the
contours of (102) in the fe-g8 plane, the fe--h9 plane, and the ge-h9 plane
at values he = h; gy = g and fe = £, respectively.

We start by investigating the contour in the fe—ge plane with
h., = h. This situation is equivalent to taking @H as in (78¢). Equation

».)

(102) then reduces to a quadratic equation of the form:

N
2 2
Klf8 + K2f6 + K3hf8g8 + K4h88 + K6g9 + K

hg + K, =0 . (104)

5 7

A typical graph of Equation (104) is shown in Figure 15. This graph
exhibits three basic characteristics we need in order to construct the
largest set in x that enjoys the saddle-point property. These
characteristics are:

(Ia) The graph of (104) is a hyperbola.

(Ib) Curve A intersects the line fq = f at exactly one other point,g, 6 = g

max’

where
gma

is always in a set @G in x.

X

[
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Max. Convex Set

i. L."‘.

ifmax= 0 if £>0

= - oo {f £<0

At

max

Max. Convex Set
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(Ic) Curve A never intersects the line,ge = g,at a point other than the
maximin point, (f,g,h). |

The shaded area to the left of Curve A is a convex set in the
fe--ge plane, and is the largest set that enjoys the saddle-~point property,
since we have already shown that J(uo,fe,ge,he) is decreasing at (f,g,h)
in all directions into the area with darker shading. However, this set
is not rectangular and therefore is not in x.

Characteristics (Ia), (Ib) and (Ic) enable us to construct the
largest set in x that enjoys the saddle-point property. This set is shown
in Figure 15 with darker shading. |

It remains to show that Characteristics (Ia), (Ib) and (Ic) are
true. Necessary and sufficient conditions for (Ia), (Ib) and (Ic) to be
true are:

(I1) The graph of Equation (104) is either a hyperbola or an ellipse.

(I2) There exist two asymptotes of J(uo,fe,ge,h) in the fe—ge plane.
They are a pair of intersecting lines.

(I13) There always exists exactly one other point besides (f,g,h) such
that J(uo,f,ge,h) = J(uo,f,g,h).

(I4) This point is always in some set GG of the class, ¥, under consideration,
and is the point (f,gmax,h) as represented in Figure 15.

(I5) There always exists exactly one other point besides (f,g,h) such that
J(uo,fg,g,h) = J(uo,f,g,h) .

(I6) This point is always on the opposite side of the asymptotes of

J(uo,fq,gq,h), and is the point (fx,g,h) on Curve B in Figure 15.
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Conditions (I1), (I2), (I5) and (I6) verify Characteristic (Ia).
Conditions (I3) and (14) verify Characteristic (Ib), and Conditions (12),
(I5) and (I6) verify Characteristic (Ic). We now show that Conditions
(I1) through (I6) are valid and discuss the precise reason why they prove
that Characteristics (Ia), (Ib) and (Ic) are valid.

Since Equation (104) is quadratic in fe and 8g> and since Kl # 0,
K # 0, Kg # 0 and K, # 0, its graph is either a hyperbola or an ellipse.
Therefore, Condition (I1) holds.

From Equation (99) we see that the denominator equals zero for
certain values of fe,ge and he. Setting the first factor equal to zero we

find that an asymptote occurs at

2, wlz
f +f-82_0%2-9 ) (105)
8 w 2

u L7r

The graph of (105) in the fe—ge plane is a vertical line. Setting the
second factor in (99) equal to zero we find that another asymptote occurs at

2 2 g.8Ph_hl
f( -8R _hZE 07 8 _, . (106)
8 w 2 2

u 2°r wul r

The graph of (106) with he = h in the fa-ge plane is a line. Since the slope

[

4

L oay
.,'
'.'1’

—

1A

of (106) is different than that for (105), these lines intersect at some point,

Since the numerator of Equation (99) is nonzero for values of f6 and 8g
satisfying (105) and (106), Condition (I2) holds.

Equation (104) evaluated at fe = f is quadratic in 8y and
therefore has two solutions. One solution is 8y = 8- Since this solution
is real, and the coefficients of (104) are real, the other solution is also

real, and Condition (I3) holds.
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' Equation (99) evaluated at f9 = f and h(j = h is of the form: :
)
G, +G,g,. + G g2 .
_ 1 256 36 1
J(ug£28g00) = Tr ) (A + G,8q) (107) _
- where ’:‘]%
.
4 2 222 2.2 2. 2. 2.2 2 2 s
.. o =_{h2g2P2k2q+nghZ # By k2 4 BRNIT o gR _ hI
R 1 4 2 2 2 x4 2 w 2 -
< 20 rw 2w L°r wr u [ o F
u u u ___‘
2 =
- w kg 2, 2, X
N + (F - B2 . 5% (108a) :
2 w 2 :
u r -
2 2222
- G = _{&M (w k2q+g_M_)} (108b) :
2 2 X 2 .
2w L°r w ir o
u u -
5
-
gZ'chZZZw 2]
G3 = -{—TZ—E} (108c)
' Zwu Lr y.i
4
2 -
c, - SR : (108d) ]
2W °r J
u o

We now show that Condition (I4) holds. We consider the cases,

=
il

X

..\

g < 0 corresponding to @G in (77a) and g > 0 corresponding to @G in (77b), {:

o separately. -4
| Case (1): g <0 , ©,=1{g,€(g,,8] 8, < & < 0! x
T ]
We have shown that the maximin point g equals 8, in this case. Therefore, ]

to prove the validity of Condition (I4) in this case, it is necessary to

- show that there exists a gmaxef(—w,g) such that J(uo’f’gmax’h) = J(uo,f,g,h).

- First, note that from Equation (84) and the subsequent discussion we have shown
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that J(uo,f,ge,h) is increasing at (f,g,h). Now consider Equation (106) eval-

uated at fe = f and he = h, which yields a value of 8q which we denote by g84°

2 2
- f(f - 82 - E_E).
wu Ezr
g = (109)
d 2 .
gph %
2
wil'r
u

(f,g.,h) is the only point where J(u ,f,g ,h) is discontinuous in g . We
d o ] 6

show that g < gq SO that J(uo,f,ge,h) is continuous over (-»,g). Note that

2.2 2 2
gPh X g BP_h1L
2 w 2
wul r u Lr
g-8; = (110)
d 2
gph™L
2
wir
u
Recall from Equations (47c¢) and (47d) that
ZP 2fP + Wy
& o X (111)
W
u P
2 2
h™Z £ + °
& = 2irtk g (112)
Lr

Using (111) and (112) in the numerator of (110),

gzphzz gzp hZZ - g?phzz g?PhZZ gzg hZZ
T EE - ) sk ey EE - )
w LT ' u L 2w L°r 2w 'r u e
u u u
2 2
=(2fP+wx)hZ+g2P(2fZ+kq)+ fz_fzp_fhzZ
ZPEzr 2wuZ Yu lzr
2

2,50 gl
= 2 2w T
2PLr u

I I SR TIPS W O

ad e .
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Therefore,

2 .2 2 2
BENZ, c¢ 8P _hIL (113)
2 w 2
wilr u °r
u
3

for all (f,g,h)€E R with f # 0, g # O, or h # 0. Using (113) in (110) we

have the result
g -8y <0 (114)

since g < 0. Therefore, J(uo,f,ge,h) is continuous over (-=,g). Now we take

the limit of J(uo,f,ge,h) as gy > -, Using Equation (107),

Gl
g—e‘ + G2 + G3ge
lim J(uo,f,ge,h) = lim A
g8—>..co ge—»—oo (f+A)(€.-+G4)
G.8g
Lim 7% +3A§)G
ge 5 - 4

Using the definition of A in (101) we note that

2 2
f+a=f-BB, ¢ BRI, (115)
W 2
u L°r
2 hzz
since we know f - %;E < 0 and £ - 7 < 0. Therefore, using Equations (108c)
u 2°r

and (108d), we note

and

-— >0 for g -~ 0 and gee (-=,8)

'y ety
3
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Therefore

lim J(u ,f,ge,h) = + ® . (116)
g > = © o
6
Since J(uo,f,ge,h) is increasing and continuous at (f,g,h), then
J(uo,f,ge,h) < J(uo,f,g,h) for some neighborhood (g - €,8), € > 0. Since
J(uo,f,ge,h) is continuous over (-»,g) and has limit + « as Bg * = there
exists some point gmaXEE(-m,g) such that J(uo’f’gmax’h) = J(uo,f,g,h).

Therefore, Condition (I4) is true for g < 0 and with GG given as in (77a).
Case (2): g>0 |, GG = {gee [ga,gb] 0<g, < Sb} .

We have shown that the maximin point g equals g, in this case. Therefore,
to prove Condition (I4) in this case, it is necessary to show that there
exists a gmaxei(g,w) such that J(uo’f’gmax’h) = J(uo,f,g,h). First, note
that from Equation (84) and the subsequent discussion we have shown that
J(uo,f,ge,h) is decreasing at (f,g,h). Equation (109) gives the only point,
84> where J(uo,f,ge,h) is discontinuous. Using the expression for 8- 84

given in Equation (110), and the relation, (113), we obtain the result
g-gd>0

since g > 0. Therefore J(uo,f,ge,h) is continuous over (g,~). Now we take

the limit of J(uo,f,ge,h) as gy > . Using Equation (107),

6y
g—e' + G2 + 6386
1lim J(uo,f,ge,h) = lim A
8y > gy (£ + A)(Eg + G
G.8
3°8
= lim 7% ¥ 0G,

ge+oo
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lim J(u ,f,ge,h) =+ (117)
g >
8
€3 Bo
since IGEWS) > 0 and q >0 for g > 0 and gee (g,»). Since J(uo,f,ge,h)

is decreasing and continuous at (f,g,h), then J(uo,f,ge,h) < J(uo,f,g,h) for
some neighborhood (g,g + ), € > 0. Since J(uo,f,ge,h) is continuous over
(8,2), and has limit + « as By > s there exists some point gmaXEE(g,w) such
that J(uo,f,gmax,h) = J(uo,f,g,h). Therefore, Condition (I4) holds for

g > 0 and OG given in (77b).

We now compute 8nax using Equation (107) with (108).

J(uo’f’gmax’h) = J(uoafsg’h)

2 2
C+ Go8nax * C3Bnay _ Gy * 6,8 +Gye
(F+a)(FA+Ge ) ~ Tf + A (A T G )

Cross-multiplying, and cancelling the term, f + A, we obtain

2 _ 2
(G) * GoBray + GaBpay) (FA + G,8) = (G + G,g + Gug") (FA + G

max Agmax)

By expanding this and factoring out the already known factor, Bpax ~ 8°
o

(8pax = 8)[63EAC ,, + ) + GGz 8 .+ G,fA-GGl=0

Setting the second factor equal to zero, and solving for gmax,

. [G,fAg + G, fA - G,6,]
max G3(fA + G4g)

Using the definitions of A in (101) and Gl through G4 in (108), and using a

few manipulations, we obtain the final result:
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We now show that fd2 > f. Comparing £

72

2
2 2 2 2.2 w k 2 2
- gf(f - B2 _ b gPh'r 2 kqn Tu q(f_gP_hZ)Z
w 2 2 2 gPT w 2
u Lr wxl T Lr u L°r
g =
max 2 2 2 2
(£(f - & P _h Z) + &Ph Z]
w 2 2
u Lr wul r
(118)

Note (118) represents Bnax for both Case (1) and Case (2). This completes
the consideration of Condition (I4).

Equation (104) evaluated at 8y = 8 is quadratic in fe, and
therefo?e has two solutions. One solution is fe = f. Since this solution
is real, and the coefficients of (104) are real, the other solution is also

real, and Condition (I5) is true.

We now show that Condition (I6) is true. We start by investigating

the asymptote equations, (105) and (106). Denote f6 in (105) by fdl' Then,
using (105)
2 2
_8P _h1ZI_
fdl + £ - 2 0 . (119)
u L°r
Substracting (119) from Relation (115) we get the result
f < fdl for all gGEGG , heceH . (120)
Denote f8 in (106) by fd2' Then using (106)
gegPhshZ
wulzr
fd2 = 2 5 . (121)
g P h™L
- (f - - =)
W
u L°r

42 to f and using (121),

3.k

e,
. ]
- ey

wlo
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K g,8Ph hZ 2 2 =
8 C) P hL .
[P £ - T - )] 7
wilr u Lr X
f - f = t_i
" d2 2P hZz :
- (f - gt _ =) .
w
. u L7r o
]
Ph'L 2P hZZ .
[B5—= + £(£ - E5 - 5]
w 2
wilr u Lr
fd2 - f > 7 5 for all gGGG)G . heeen
- P h'Z
- (£ - A2
w
u L%r
since 8y8 > gz and heh > h2 for all gF)e@G and hBEOH. Therefore, since
. 2y s
£ - B2 _ < 0 and Relation (113) holds, f,, - £ > 0. That is,
w 2 d2
u L7r
€
B f < fd2 for all 8q GG R hGEGH . (122)
] , . .
Equation (121) evaluated at h9 = h has negative slope in the fe-ge plane
when g < 0 and @G as in (77a), and positive.slope in the fe—g9 plane if "
g > 0 and @G as in (77b). The graphs of (119) and (121) are a pair of .
-xq
u; intersecting lines oriented as shown in Figure 15. From Figure 15 we can see '}
that fdz > fdl for some 8y < g, when g < 0 or for some 8y > 8 when g > 0. .“:1
We will take the limit of J(u , e,ge,h) as fe > fzz at a value of 84 such _J
-d
':' that fd2 > fdl’ as shown in Figure 15. Examination of (99) shows that 1'
B
lim, J(u_,f,,g,,h) = lin =1 :
' e) 6! + 2 o
£y f40 fs= fay gg8h 2 =
(fe + A)(f@A + 7)
W o I .
u ~
( 2p2,6,2,2 g2 %y gz £2e%%h%z?  w k%q e
. P"h 'L 8 9 X 2 -
- l [‘ 2 + >3 + 5 + 2 A (123) 4
2w 2 2w Lr 2w 4°r =
u u
4 =
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since the fe term and the gehe term (evaluated at he = h) cancel when

fe = fd2°

asymptotes given by (119) and (121), the first term of the denominator of

Now since we are operating at fe's that are to the right of the

the right side of (123) is positive, where before it was negative, and the
second term of the denominator is negative, where before it was positive.
Therefore, the denominator is negative, and inspection of (123) shows that
the numerator is also negative, so that J(uo,fe,ge,h) is positive for values

of fe close to f+ Therefore,

d1-

lim J(u s e,ge,h) o . (124)

f .*fdl

Now consider the portions of the lines (119) and (121) that are right-most
which we have labeled fd in Figure 15. Since J(u s e,ge,h) = + o on the line
segment corresponding to Equation (121), and J(uo,fe,ge,h) is continuous for
fe > d’ J(u ’ e,ge,h) = + o on the line segment corresponding to (119).
Therefore,

11m J(u s e,ge,h) =+ for all gee:m. . (125)

f ->fd

We now take the limit of J(uo,fe,g,h) as f,+>. Equation (99) evaluated at

89 = 8 and hs = h is of the form:

F| + Fyf + F3f2
I(a £, ,8:h) = (126)
(£, + A) (£ A + 5——3“—5)
w Q r

where
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=
- 4.2.2.2 ]
R 2p2y 422, EP I 2.2 2,222 =
F1=-{ ’;1;+ = +gphz(ka2q+ﬁ-——PgZ) ]
' 2w 2w T 2w 7°r w 2r .
N u u u u .
::n’ (1273) B
W qu 2 2 ”j
0 + X (- BR_0L2 5
~ 2 2
o u °r 1
'
i 2.2.2.2 2 2 »
z
F = - {l (w k2q+BLh___)(f_.g_P-P_z)} (127b) ]
2 2 X 2 w 2
wi'r u L7r Ny
u -
- 1
. 2.2.2.2 i
F . {B_P__Ri_} (127C) E
3 2
2w L' r .
u
F = S8PhI . (127d) B |
4 2 -]
wi'r ;
u Y
2l
. Taking the limit of J(uo,fe,g,h) using (126), _‘
)
_.1. + _g + F '1
- fz 3 .'4
g 0 F3
lim J(u ,f ,g,h) = 1lim = —= 4
' £ > ‘e £ re A glpn’c . A o
u 8 8 (1 + -—) A+ 5 ‘j
b 9 fow 5?, r -
Ju J
]
Using the definition of F3 in (127¢) and A in (101), od
. s .
ch v2 :
2wu22r K
. lim J(u ,f ,g,h) = o) 0 . (128) -
N f »>o gP h' L R
ej - (f - - —)
w 2
u 2r
We now compare this value of J(uo,fe,g,h) with the maximin value given
R f = oo
by Equation (49): ®
&
3
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2P2h222
2 2w er
8 (f - gz - ___)
w 2
u Lr
2 2
gZpp(f - BB hzz)
2 wu 207 r
= k qP +
2 2
gP h'Z
w (f - - =3
u w 2
u ' o
Therefore,
I(ug»£.8,0) - J(“o’fe’g’h)‘ >0 . (129)
f =
0
But from Equation (125) we know
J(uosf,gyh) - J(uo,fe,g,h) + < 0 . (130)
fe = fd

Therefore, since J(uo,fe,g,h) is continuous over (fd,m), there exists some

point f6 = fx in the interval (fd,w) such that
J(uoyf9g9h) - J(Uo)fx’g’h) =0

Therefore, Condition (I6) holds.
Condition (I6), supported by Condition (I5), shows that the graph
(104) is not an ellipse since the graph of (104) would be required to cross

the asymptotes that exist due to Condition (I2). Therefore, by Condition (I1)

we know that the graph is a hyperbola. Therefore, Characteristic (Ia) is true.

Conditions (I3) and (I4) are equivalent to Characteristic (Ib), and Conditionms
(15) and (I6), supported by Condition (I2), are equivalent to Characteristic
(Ic). This completes the proof of the validity of Characteristics (Ia), (Ib)

and (Ic).
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. Characteristics (Ia), (Ib) and (Ic) enable us to construct the ;

largest set in ¥ with GH given in (78c). This set is shown in Figure 15 as ;

the area with the darker shading. i

n Next we investigate the contour in the fe - he plane with ge =g, :
. This situation is equivalent to setting GG as in (77¢). Equation (102) then

reduces to a quadratic equation of the form: ;

-

- 2 2 2 -

Klfe + KZfe + K3gfeh6 + K4ghe + K5he + K6g + K7 =0 . (131) .

- A typical graph of Equation (104) is shown in Figure 16. This graph exhibits _

- three basic characteristics we need in order to construct the largest set in :

X that enjoys the saddle-point property. These characteristics are:

N (IIa) The graph of (131) is a hyperbola. -

" (IIb) Curve C intersects the line fe = f at exactly one other point,h9 = hmax’ é

;j where hmax is always in a set QH in x. %

| (ITc) Curve C never intersects the line,he = h,at a point other than the :

u maximin point, (f,g,h). ’j

We see that, as in the previous case, the shaded area to the left of
Curve C is Z convex set in the fe - h6 plane, and is the largest set that
enjovs the saddle-point property since we have already shown that J(uo,fe,gg,he)
is decreasing at (f,g,h) in all directiomns into the area with darker shading.
However, this set is not rectangular and therefore is not in ¥.

Characteristics (IIa), (IIb) and (IIc) enable us to construct the

largest set in X that enjoys the saddle-point property. This set is shown

in Figure 16 with darker shading.
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x'Oiff>O
= - ® if £<0

ma

£
max

Max. Convex Set

Curve C:

f =0 if £>0
£72% o @ if £<Q

Max. Convex Set

for h =<0

Curve C

Figure 16. Contour of J(f_.,3,h.) = J(f,3,h) in the f_;‘ - h% plane.
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l@ It remaine to show that Characteristics (Ila), (IIb) and (Ilc) are
valid. Necessary and sufficient conditions for (IIa), (IIb) and (IIc) to be ]
R
true are: A
:i
] (I11) The graph of Equation (131) is either a hyperbola or anm ellipse. 3
- ]
(II2) There exist two asymptotes of J(uo,fe,g,he) in the fe - he plane. "
They are a pair of intersecting lines. :
- (I113) There always exists exactly one other point besides (f,g,h) such that a
. 3
J(onfygahe) = J(uo,f,g,h).

(II4) This point is always in some set GH of the class, X, under consideration,

and is the point,(f,g,hmax),represented in Figure 16.

t
A e

(I15) There always exists exactly one other point besides (f,g,h) such that

J(uo,fe,g,h) = J(uo,f,g,h).

Bk b

ll (116) This point is always on the opposite side of the asymptotes of ;
J(uo,fe,g,he), and is the point (fx,g,h) on Curve D in Figure 16. :

“ 4
Conditions (II1), (II2), (II5) and (I16) verify Characteristic (IIa). ;

l! Conditions (II3) and (II4) verify Characteristic (IIb), and Conditiomns (I112),
(115) and (I16) verify Characteristic (IIc). We now show that Conditions (IIl)

through (II6) are valid, and discuss the precise reason why they prove that

L Characteristics (IIa), (IIb) and (IIc) are valid.
Since Equation (131) is quadratic in f',l and h,, and since Kl # 0,
iﬁ Kg # 0, K # 0 and K, # 0, its graph is either a hyperbola or an ellipse.

Therefore, Condition (IIl) holds.
To prove Condition (I12) we again investigate the denominator of

(99) by setting each factor equal to zero. From Equation (105) we see that

one asymptote is a vertical line in the fe - h9 plane. From Equation (106)
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we see that with 8g = 85 its graph is a line in the fe - he plane. Since the
slope of (106) is different than that of (105), these lines intersect at
some point. Since the numerator of (99) is nonzero for values of fe and h8
satisfying (105) and (106), Condition (II2) holds.

Equation (131) evaluated at fe = f is quadratic in he, and therefore,
has two solutions. One solution is he = h. Since this solution is real, and
the coefficients of (131) are real, the other solution is also real, and

Condition (II3) indeed holds.

Equation (99) evaluated at £, = f and gy = 8 is of the form:

2
H, + H,h, + H.h
I T S I N’
J(u,.f,8,hg) = F 3 A) (FA + G,h.) (132)
where
4_2 22
g Phi'w 22222 2.2.2.2 2 2
H o= - x, Egphrt £ 2 Rt gP hr
1 2 2 2 2 2
2wu2 T 2w L°r wuZ r u Lor
2 (133a)
wkq 2 2
I - B2 LY
u L°r
2 2.2.2.2
Hy = - (BIE (y 1 Pq+ BB DT, (133b)
2w 2 r wir
u
2.2.2.2
H, = - { Pht } (133¢)
3 4 2
2w L °r
u
2PhZ
g = £&1fhe . (1334d)
4 2
wir

We now show that Condition (II4) holds. We consider the cases,
h <0 corresponding to GH in (78a) and h> 0 corresponding to @H in (78b),

separately.

L
& s a



g |

‘N Cas

o
:

81

Case (1): h<O (-)H = {hee [ha,hb] ha < h'b < 0}

We have shown that the minimax point, h, equals hb in this case. Therefore;
to prove the validity of Condition (II4) in this case, it is necessary to

show that there exists a hmaxei(—w,h) such that J(uo,f,g,hma ) = J(uo,f,g,h)c

X

First, note that from Equation (88) and the subsequent discussion, we have
shown that J(uo,f,g,he) is increasing at (f,g,h). Now consider Equation (106),
evaluated at fe = f and 8y = 8 which yields a value of h8 which we denote

by h,:
d 2
£(f _.%rg - lLlh

4 ; (134)

(f,g,hd) is the only point where J(uo,f,g,he) is discontinuous in he. We show

that h < hd so that J(uo,f,g,he) is continuous over (-»,h). Note that

2Ph22 2P hZZ
Eo= v -850
W 2
wuﬁ T u L°r
h - hd = 3 . (135)
g Phi
2
w ir
u

Using Equation (113) and the fact that h < 0 we have the result

h=h; <0 . (136)

Therefore, J(uo,f,g,he) is continuous over (-=,h). Now we take the limit

of J(uo,f,g,he) as he +-», Using Equation (132),

B
B, T F2 * sy Hh,
lim J(u ,f,g,h,) = 1lim = lim ————
h,>-e  © O h et + AR v n) b e-e (EF AR
8 ) he 4 3

!

o
.}'1
o
-
0
-—

]‘: b2 P AP S

. . H r . .
: ..

whif 2 L

L

PR
N .
0

_,A
I NENE
RIS

L*A_l . K




RG] (2

AN PR

82

Using Relation (115) and the definitions of H, in (133¢c) and H, in (133d) we

3 4
note
H
3 > 0
(f + 4)
and
he
— >0 for h < 0 and hee (-=,h) .
4
Therefore,
lim J(uo,f,g,he) =+ » . (137)

he > -

Since J(uo,f,g,he) is increasing and continuous at (f,g,h), then
J(uo,f,g,he) < J(uo,f,g,h) for some neighborhood (h - € ,h), €>0. Since
J(uo,f,g,he) is continuous over (-»,h), and has limit + =~ as he->-w, there
exists some point hmaxe(—m,h) such that J(uo,f,g,hmax) = J(uo,f,g,h).

Therefore, Condition (II4) is true for h < 0 and with GH given as in (78a).

Case (2): h >0 GH = {hee [ha,hb] 0 < ha < hb}

We have shown that the maximin point, h, equals ha in this case. Therefore,
to prove Condition (II4) in this case, it is necessary to show that there
exists an hmaxe(h,m) such that J(uo,f,g,hmax) = J(uo,f,g,h). First, note
that from Equation (88) and the subsequent discussion, we have shown that
J(uo,f,g,he) is decreasing at (f,g,h). Equation (134) gives the only point,
hd’ where J(uo,f,g,he) is discontinuous. Using the expression for h - hd

given in Equation (135), the Relation (113), and the fact that h > 0, we

obtain the result:
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h - hd >0

Therefore, J(uo,f,g,he) is continuous over (h,®). Now we take the limit of

J(uo,f,g,he) as he-*“. Using Equation (132),

H

1
h—e- + H2 + H3h9 H3h6
lim J(u ,f,g,h.) = lim = lim
hg>e ° O hse g+ ) h e EFAE
°] 6 he 4 8
Therefore,
lim J(u ,f,g,h.) =+ « (138)
h »>x o 6
6 F
H, By %
—_— —_— (<] oo i
since E+ A > 0 and H4 > 0 for h > 0 and h6 (h,»). Since J(uo,f,g,he) is :
decreasing and continuous at (f,g,h), then J(uo,f,g,he) < J(uo,f,g,h) for ]
some neighborhood (h,h + ¢), € > 0. Since J(uo,f,g,he) is continuous over :

(h,*), and has limit + = as he->m, there exists some point hmaxe(h,w) such
that J(uo,f,g,hmax) = J(uo,f,g,h). Therefore, Condition (II4) holds for
h > 0 and @H given by (78b).

We now compute hmax using Equation (132) with (133).

J(uo’f’g’hmax) = J(uo,f,g,h)

2 2
Hl + Hthax + H3hmax _ H1 + HZh + H3h

(f + A)(fA + Héhmax) (f + A) (fA + H4h) :

Cross-multiplying, and cancelling the term, f + A, we obtain

2
(H1 + H.h + H3hmax)(fA + Hah) = (Hl + H

2
oM ax h + H3h ) (fA + Hahmax)

2

By expanding this and factoring out the already known factor, hmax—h’
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LR I I

(hmax-h)[u3fA(hmax+-h) + H_H hh . +H fa - H H4] =90 .

7 Xl

- 374 2 1
'.{."
‘:{: Setting the second factor equal to zero, and solving for hmax’
- LT [H,fAh + H,fA - H.H, ]
& max H,(fA + H )
= Using the definitions of A in (101), and Hl through H4 in (133), and using a
: few manipulations, we obtain the final result:
2 2 2 2y w2’ 2 2
o gP h°r,  gPhy 2 B x gP  h°r,2
. - hf(f - - ) + (f° + ) + (f - - =)
- w 2 2 w PhI w
h u L°r wuk q u u L7r
5 h = .
%: max EC - g2P ) hZZ) . g?PhZZ]
T Yo o % w 2%r (139)
] u
j: Note that (139) represents h __ for both Case (1) and Case (2). This completes
}: the consideration of Condition (II4).
i;’ Note that Conditions (II5) and (I16) are equivalent to Conditions
jf‘ (I5) and (I6) which we have shown to be true. Therefore, Conditions (II5)
- and (I16) hold.
‘?g As in the previous case, Condition (II6), supported by Condition
ﬁf; (115), shows that the graph of (131) is not an ellipse since the graph of
;ii (131) would be required to cross the asymptotes that exist due to Condition
.ﬂ (I12). Therefore, by Condition (II1), we know that the graph is a hyperbola.
'fﬁ Therefore, Characteristic (IIa) is true. Conditions (II3) and (II4) are
2{1 equivalent to Characteristic (IIb), and Conditions (II5) and (II6), supported
i by Condition (II2), are equivalent to Characteristic (IIc). This completes
e
i: the proof of the validity of Characteristics (Ila), (IIb) and (IIc).
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li Characteristics (IIa), (IIb) and (IIc) enable us to comnstruct the
| largest set in x with GG given in (77c). This set is shown in Figure 16 as
the area with the darker shading.

i l' Finally, we investigate the contour in the 8g " he plane with

f9 = f. This situation is equivalent to taking QF as in (76¢). Equation

t: (102) then reduces to a quadratic equation of the form:

2 2 2
- : =
% K6ge + (K3f + Ké)gehe + Kshe + Klf + K2f + K7 o . (140)

A typical graph of Equation (140) is shown in Figure 17. This graph exhibits
three basic characteristics we need in order to construct the largest set in
X that enjoys the saddle-point property. These characteristics are:

(I1Ia) The graph of (140) is a hyperbola.

i' (IIIb) Curve E intersects the 1ine,h6 = h, at exactly one other point

- ! - 0, in x. )
8, 8rax where 8 ax 1S always in a set G im X
(II1c) Curve E intersects the 1ine,ge = g,at exactly one other point
= i i =) .
I! h6 hmax where hmax is always in a set H in ¥

The shaded area to the left of Curve E is a convex set in the

:f 8g ~ he plane, and is the largest set that enjoys the saddle-point property,

- . P—_— T
. R . s oo
e W PRI Gy e .

p since we have already shown that J(uo,fe,ge,he) is decreasing at (f,g,h) in

3

all directions into the area with darker shading. However, this set is not
rectangular and therefore is not in . <3
. Characteristics (IIIa), (II1Ib) and (IIIc) enable us to construct fﬁ

the largest set in x that enjoys the saddle-point property. This set is

shown in Figure 17 with darker shading. fj1
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It remains to show that Characteristics (IIIa), (IIIb) and (Illc)
are valid. Necessary and sufficient conditions for (IIla), (IIIb) and (IIlc)
to be true are:

(ITI1) The graph of (140) is either a hyperbola or an ellipse.

(I112) The graph of (140) has center at the origin.

(III5) There always exists exactly one other point besides (f,g,h) such that
I(u,,fr8g,0) = J(u_,f,8,h). |

(I114) This point is always in some set GG of the class, X, under
consideration. This is point (f’gmax’h) as represented in Figure 17.

(III5) There always exists exactly one other point besides (f,g,h) such
that J(uo,f,g,he) = J(uo,f,g,h)c

(I116) This point is always in some set @H of the class, X, under considera-
tion. This is point (f’g’hmax) as represented in Figure 17.

Conditions (III1) through (III6) verify Characteristic (IIla).
Conditions (II13) and (III4) verify Characteristic (IIIb), and Conditioms
(III5) and (III6) verify Characteristic (IIIc). We now show that Conditions
(I111) through (I1I6) are valid, and discuss the precise reasons why they
prove that Characteristics (IIIa), (IIIb) and (IIIc) are valid.

Since Equation (140) is quadratic in 8q and he, and since
Klfz + K2f + K7 # 0, Ks # 0 and K6 # 0, its graph is either a hyperbola or a
ellipse. Therefore, Condition (IIIl) is true.

Since there are no terms in (140) that are linear in 8g» and there
are no terms that are linear in he, the graph of Equation (140) has center

at the origin. Therefore, Condition (III2) is true.
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Conditions (II13) and (III4) are equivalent to Conditions (I3) and
(14) which are known to be true. Therefore, Conditions (III3) and (III4)
are true.

Conditions (III5) and (III6) are equivalent to Conditiomns (I13)
and (I14), which are known to be true. Therefore, Conditions (III5) and
(I116) are true.

Conditions (III3) through (III6) establish the existence of points
(f’gmax’h) and (f’g’hmax) as solutions of (140). We also know that (f,g,h)
solves (140). Since, by Condition (III2), we know the graph has center at
the origin, the graph of (140) cannot be an ellipse since we cannot find an
ellipse centered at the origin that intersects these three points, as we can
easily see from Figure 17. Therefore, by Condition (IIIl), the graph of
(140) is a hyperbola and Characteristic (IIIa) is true. Conditions (III3)
and (II14) are equivalent to Characteristic (IIIb), and Coﬁditions (IIIS) and
(1116) are equivalent to Characteristic (II1Ic). This completes the proof of
Characteristics (IIIa), (IIIb) and (IIIc).

Characteristics (IIIa), (IIIb) and (I1Ic) enable us to construct
the largest set in x with GF given in (76¢c). This set is shown as the area
in Figure 17 with the darker shading.

We can combine the results that were arrived at through the study
of the contours in the fe - 8, plane, the fe - he plane, and the 8y = he

plane at values h8 =h, g, =8 and ¢

5 9 = f, respectively, to find the largest

set in the class, X, when all three parameters are unknown. All parameter
sets that are subsets of this set enjoy the saddle-point property. The result

is summarized in the following theorem.

I
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' Theorem 3: Consider a subclass $ of the class, x; such that:

8=1{0:0 U ©e U e .1

FS GS HS
. and eFS‘ GGS’ QHS are each one of the following, respectively:
QFS = {fee [fa,f] - o < fa < f <0} (141a)
or OFS = {fee [fa,f] 0 < fa < f} (141b)
-
or GFS = {f6 = f fer f # 0} (141c)
- Ocs = (85€[8,58] 8, <8, <8 <0} (142a)
= e
o or Ous = (8,€ [8,8,] 0<gzg =<8 .1} (142b)
'i or ®GS = {ge =g g€ER g # 0} (142¢)
r O = (B € [b,h] b <h <h <0} (143a)
"
= (S
D or O, = (hy€ [h,h] 0<hgh <h_ } (143b)
- = = e
or eHS {h8 h h€ER h # 0} (143c)

where 8nax is given by Equation (118), and hmax is given by (139). The

- following results hold:

1) (f,g,h) is the solution to the maximin problem, (9), for scalar svstems of

the form described by (3), (4) and (5) for ©€ .

2) The minimax problem,(8), and the maximin problem, (9), for scalar systems
of the form described by (3), (4) and (5) have the same solution if and only \j
if © belongs to the class, $, described above. _u
-

This theorem describes all the possible parameter sets in the class

X such that a saddle point exists at the maximin solution, (f,g,h). However,
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this theorem does not say that there is no minimax solution for sets in x that
are not in 8, but only that the minimax solutions for these sets do not
correspond to the maximin solutions.

This completes our solution to the minimax problem for scalar
systems by the method of solving the maximin solution for the same system. We
now consider the examples of the previous section, and compare the performance

of the minimax controller to that of the least sensitive controller.

4.4. Examples

The following scalar system was considered in Section 3, which we

state here using the present notation for the uncertain parameters:

dxt = fextdt + geutdt + dwt (32a)
dyt = xtdt + dvt (32b)
dwt 0 dwt dwt 1 0
E = » E = dt
dvt 0 dvt dvt 0 1
1% 2 2
J(u,f,,8,,1) = E [ lim Ef (x, + u )de] . (33)

W,V T> > 0

Here f6 = 61 and g, = 62. In Example 4.1, 8g is known and equal to 1, and

f6 is unknown. In Example 4.2, fe = 1 and gq is unknown.

For Example 4.1, f, unknown and 8g = 1, we introduced a uniform

9
distribution on the following sets in Example 3.1 of Chapter 3:
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E 0y, = (£,€10.9,1.11) (144a) -
Op, = {f,€10.7,1.3]} (144b)
Opy = 1, € [0.5,1.5]} . (L44c)

R A

For Example 4.2, fe = 1 and g4 unknown, we introduced a uniform

distribution on the following sets in Example 3.2 of Chapter 3:

-

. O = {g,€ [0.9,1.1]} (145a)
©cy = {84€10.7,1.3]} (145b) ,.
©y3 = {8,€[0.5,1.5]} . (145¢)

Equations (47) represent the controller corresponding to the maximin

solution, (f,g2), which is yet to be determined. For these examples Equations

%

(47) reduce to:

UO = - gP Xt (146a) .
dx, = (f - g P)x dt + I(dy, xtdt) (146b)
2.2
2fP - g P" + 1 =0 (146¢)
265 - 52 #1 =0 (146d) ;
» i ‘ ;'
Consider Example 4.1 with g, = 8 = 1, and the parameter sets in
(1l44). We can use the Fréchet differentials of Theorem 2 to find the maximin
- solution for each of these sets. The result for each set is stated in
<
d Part (1) of Theorem 3. The maximin solutions are:
L O. : f=1.1 (14
Ly . B “ . d
:i Fl
er f=1.3 (1.7
GF3 : £ =1.5 .
.
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From Theorem 3, Part (2), we know the sets eFl’ 9F2 and GF

3
enjoy the saddle-point property, and thus Solutions (147) are minimax

solutions, and the corresponding controllers, (146), are minimax controllers.
We wish to investigate the performance of these minimax controllers

as the parameter, fe, varies in the sets 9F1, 9F2 and 9F3' To facilitate

this, we define J(uo,fe,ge,l) in Equation (99) by the notation JMM(fe’ge)'

We use Equation (99) to calculate JMM for each example. Then the performance

measure used in Chapter 3 is used, that is, a graph of JMM - JOPT as fe or g,

varies in their respective sets.

To evaluate Equation (99) for a particular value of f, Equations

(146c¢c) and (146d) must be solved to find the corresponding P and I:

P=f+ V£ 41 (148a)
L=f+ /E2 41 . (148b)

Therefore, for £ = 1.1, and GF as in (l44a),

1
P = 2.5866
L = 2.5866
Then, Equation (99) reduces to:

22.3814 fg - 95.4886 fe + 206.5586
(4.1732 - fe)(6.6905 - 4.1732 fe)

JMM(fe) = (149)

A plot of JMM(fe) - JOPT(fe) over [0.9,1.1] is shown in Figure 18.

For f = 1.3, and @F in (144b),

2
P = 2.9401

= 2.9401

Pata T
—tee

RO

)

da
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i Then, Equation (99) reduces to:

37.3610 fg - 173.4110 £, + 412.4891

Twi(fe) = ~G.5802 - £,)(8.6442 - 4.580Z £,) (150
A plot of JMM(fe) - JOPT(fe) over [0.7,1.3] is shown in Figure 19.
For £ = 1.5,
P = 3.3028
I = 3,3028
Then Equation (99) reduces to:
59.4976 fg - 306.3235 fe + 786.5119
(151)

JMM(fe) = (5.1056 - fe)(10.9085 - 5.1056 fe)

A plot of JMM(fe) -J (fe) over [0.5,1.5] is shown in Figure 20.

OPT
Figures 18, 19 and 20 show the relative cost of the minimax

controllers. Also, these figures show the relative cost of the least

sensitive controllers we previously displayed in Figures 1, 2 and 3. From

these plots, we can compare the performance of the minimax controllers with

the performance of the least sensitive controllers. Several observations can

be made.

1) Recall that the minimax controllers are optimal at the worst-case parameter

value, whereas the least sensitive controllers are not optimal at any parameter

value in the intervals under consideration.

2) The least sensitive controllers exhibit superior performance over a wider

range of parameter values than the minimax controllers exhibit. This property

can be quantified as the percentage of full range that a particular controller

exhibits superior performance.
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s

k OF %2 range (least sensitive) % range (minimax)

[0.9,1.1] 77.5% 22.5%

[0.7.1.3] 82.3% 17.7%

[0.5,1.5] 84.2%2 15.8% .
»

- From these figures we can see that the least sensitive controllers exhibit
superior performance for an increasing relative range of parameter values
as less parameter sensitivity is desired.

-

o 3) The relative difference between the maximum relative cost for the

. minimax controllers and the least sensitive controllers decreases as

\."_‘

- less sensitivity is desired. The relative maxima as a percentage of

= Jyy(max) - Jop(max) are:

o © % difference

{0.9,1.1] 62.5%
o [0.7,1.3] 40.9%
o [0.5,1.5] 17.0% .
II Note that, as will be seen in the second example, this trend will continue.
As we widen the range of parameter values, the maximum relative cost of
ij the minimax controller is actually less than the maximum relative cost of
- the least sensitive controller.

These observations are useful when considering which design is

best for a particular application. However, discussion of design considera-

tions is postponed until after the investigation of Example 4.2. p
Now consider Example 4.2 with fe = f = ] and the parameter sets R
in (145). We can use the Fréchet differentials of Theorem 2 to find the

maximin solution for each of these sets. The result for each set is stated

r
) e

‘s's

in Part (1) of Theorem 3. The maximin solutions are

)
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=

e
L ) 0.9 (152a)

Qoo c1 ° 8 .

(- . g =0.

‘3;} 6G2 : g =0.7 (152b)

'

| 9G3 : g=0.5 . ‘ (152¢c)

ﬁks We now calculate 8max for each of these sets using Equation (118). .
\£3 To evaluate (118) we need the corresponding P and I for each g in (152). L
N From Equations (146¢) and (146d) we can evaluate P and I:

=

+ /1 + g2

= paltA¥e ass
k- g )
i p=1+4/7 . 1s3)
tf Using Equations (118) to evaluate 8rax’ the results are:

ré;i ebl : g=0.9 Bhax = 9.5726 g
A8 o

;?tﬁ co P 8= 0.7 Bpax = 11.3463

J ©.: g=0.5 g __=14.8239 .

ot G3 max

ﬁﬁ: Therefore, by Theorem 3, Part (2), the sets Gcl, eGZ and 9q3 all enjoy the

“ v saddle~point property, and thus Solutions (152) are minimax solutions, and

fif the corresponding controllers, (146), are the minimax controllers. |
-j}ﬁ It is interesting to note that, for this example, we enjoy a :
:LLT rather liberal choice of parameter sets in the sense that as the deviation
ﬁil; from the mean increases, the upper bound on the set also increases, so

';i; that we are limited by the lower bound, gy = 0, rather than the upper tound,

.. ge =8 .k Therefore, for this example, all the desired deviations from the

AN

33\: mean, up to 100%, have minimax controllers that we can design using the :

.

N
:f method described in this section.
hY
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i' To evaluate JMM(ge), Equation (99) is used with P and I for each

g given by Equations (153a) and (153b).

Te For g = 0.9, and 9G1 in (145a),
! P = 2.8955
= 2.4142

Then Equation (99) reduces to:

19.7902 gg + 127.6514 g, - 29.6352
hi(8) = 377596 (3.7596 - 6.2913 g) ' (154)

A plot of JMM(gS) - (ge) over {0.9,1.1] is shown in Figure 21.

OPT
For g = 0.7, and GGZ in (145b),
= 4.5320
I = 2.4142 .

Then Equation (99) reduces to:

29.3287 gg + 224.6223 gy - 43.1607
w85 26349 (3.6349 - 7.6588 g)

A plot of JMM(ge) - JOPT(gO) over [0.7,1.3] is shown in Figure 22.

For g = 0.5, and 9G3 in (145¢),

P = 8.4721

= 2.4142

Then Equation (99) reduces to: -

-
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52.2926 gg + 539.8936 8g ~ 75.6519

2.5322 (3.5322 - 10.2267 ge)

JMM(se) = (156)

A plot of JMM(ge) - JOPT(ge) over [0.5,1.5] is shown in Figure 23.
Figures 21, 22 and 23 show the relative cost of the minimax
controllers. Also these figures show the relative cost of the least sensitive
controllers that are displayed in Figures 8, 9 and 10. From these plots,.
similar observations can be made as in the previous example.
1) Again, the minimax controllers are optimal at the worst-case parameter
value, and the least sensitive controllers are not optimal for any value.
2) The least sensitive controllers exhibit superior performance over a
wider range of parameter values. The percent of full range that a particular

controller exhibits superior performance is shown below:

OG % range (least sensitive) %2 range (minimax)
(0.9,1.1] 78.557% 21.457%
[0.7,1.3] 85.93% 14.07%
[0.5,1.5] 90.91% 9.09%

Again the least sensitive controllers exhibit supe.ior performance for an
increasing percentage of the full range of parameter values as less parameter
sensitivity is desired.

3) The relative difference between the maximum relative cost for the minimax
controllers and the least sensitive controllers decreases as less parameter
sensitivity is desired.

The relative maxima as a percentage of

JMM(max) - JLS(max) are:
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QG %2 difference
[0.9,1.1] 57.63%
{0.7,1.3] 3.39%
[0.5,1.5] - 102.86% .

Here the results are much more dramatic than in the previous example. For
the set, [0.5,1.5], the maximum relative cost for the least sensitive controller
is over 100% higher than the maximum relative cost of the minimax controller.

One cause for the difference in the behavior of the relative

‘maxima of the two examples may be seen by referring back to the plots of

JOPT for the two examples given in Figures 4 and 1l1. As can be seen from

these plots, the least sensitive controller must compensate for much higher

worst-case costs when 8y = 62 is unknown. Also these worst-case costs increase

more rapidly as the parameter set is widened for the 8y = 62 case.

This completes our observations for the two examples. These
observations are useful when one has to make a choice between the two designs
for a particular application. From Observations (2) and (3) of the two
examples, one may detect a conflict in objectives. On the one hand, the
least sensitive controllers exhibit superior performance over the wider range
of parameter values. On the other hand, the least sensitive controllers can
exhibit very poor performance over the worst-case values of parameters when
the variance is substantial. If this worst-case performance is intolerable,

one may prefer the minimax controllers over the least sensitive controllers.

Therefore, either controller design may be preferable over the other, depending

on the application.
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4.5. Conclusions

In conclusion, this section has dealt with the design of minimax
controllers that minimize the worst-case cost. An equivalence between the
solution of the minimax problem, (8), and the solution of the maximin problem,
(9), has been sought. Problem (9) was shown to have a solution which could
be found by setting the Fréchet differentials in Theorem 2 nonpositive.

Theorem 2 also gave the requirements for the equivaleﬁce of the minimax
problem, (8), and the maximin problem, (9). We noted that the method of proof
of the equivalence of (8) and (9) when the uncertainties were in the noise
covariance given by Looze, Poor, et al. [7] could not be used here since
that proof relied on the creation of an error model that could not be formed
in this case because the uncertainties were in the dynamics of the state
model. Indeed we found that in the scalar case there were examples where
(3) and (9) were not equivalent.

The scalar problem was then considered. The maximin solutions for
a class of sets, x, was found by setting the Fréchet differentials of Theorem 2
nonpositive. We found the largest convex set in ]f3such that (8) and (9) are
equivalent by examining the level surface of (99) at the maximin solution.

This surface is a half-hyperboloid defined by (102). By examining the
contours of (102) in the fe - 8 plane, the fe - he plane and the 8y = he
plane at values of he = h, 8y, = 8 and fe = f, respectively, we were able to

find all the sets in X such that (8) and (9) were equivalent. This result

was summarized in Theorem 3.
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Finally the examples of Chapter 2 were considered, and Theorem 3

was used to show that the solutions to (8) and (9) were equivalent in these

examples. The performance of the minimax controllers was compared with

e the performance of the least sensitive controllers of Chapter 2. It was f
::: seen that depending on the design objectives either controller may be

-
s preferable. Specifically, the least sensitive controllers were seen to

K exhibit superior performance over a wider range of parameter values, but

the minimax controllers had lower maximum cost when the relative range of

parameter values was substantial.
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. CHAPTER 5

A TWO-DIMENSIONAL SYSTEM

In this chapter, we consider the design of least sensitive and

minimax controllers for a two-dimensional system with different uncertainties.
These examples serve to present some important ideas about the design
procedures and considerations for multivariable systems that were not
illustrated in the previous examples.

The design of least sensitive controllers is considered first. The
design procedure for these examples is the same as that of Chapter 3. However,
with multivariable systems, the designer has the option of reducing the order
of the controller dynamics, thus perhaps saving on some fixed costs. Therefore,
the analysis of these examples will concentrate on the relative performance of
the reduced-order controllers and the full-order controllers.

Next, the design of minimax controllers is considered. We saw in
Chapter 4 that the design procedure for minimax controllers for multivariable
systems in a general sense was not feasible, particularly in being able to
show the equivalence of the minimax sq}ution to the maximin solution through
verification of the saddle-point condition of Theorem 1, Chapter 4. However,
this chapter shows how the design may be carried out numerically for a specific
example. First, the maximin controller can be found using a plot of the
optimal cost for each value of the unknown parameter. Once the maximin
solution is obtained, we can verify the saddle-point condition by investigating
a plot of the cost associated with the use of the maximin controller for

each value of the unknown parameter.
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Finally performances of the minimax and the least sensitive
controllers are compared under various circumstances, and the considerations

one should make in choosing a particular design are discussed.

5.1. Formulation of Examples

We consider a two-dimensional system in canonical form with four

possible unknown parameters:

dx1 0 1 x1 0 1 0 dw1
= dt + udt + (157a)
dx2 61 62 Xy 93 0 1 dw2
%
dy = (8 0) dt + dv . (157b)
4 Xy

The nominal parameter vector is (e1 92 63 64)‘ = (1 -111)°. We consider
four examples, each with only one parameter unknown. In each example, we
consider intervals with end points that are 10%, 30% and 50%, off the

nominal value.

Example 5.1: 61 unknown, 62 = -1, 63 =1, 64 = 1
Example 5.2: 61 =], 92 unknown, 63 =1, 94 =]

Example 5.3: 91 =1, 62 = -1, 63 unknown, 64 =1
Example 5.4: 61 = ], 62 = -1, 93 =1, 64 unknown

L.

---------
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‘ 5.2. Least Sensitive Controllers

The gradient algorithm developed in Chapter 3 and given in the
Appendix can be used to find first and second-order least sensitive
- controllers for these examples. However, an adequate starting point must be

fo.ud in order to use the algorithm.

As a starting point for second-order controllers, we use the optimal
controller for the nominal system in the block diagonal coordinates, (10). The

nominal system is:

dxl 0 1 xl 0 1 0 dwl
- de + udt + (158a)
dx, 1 -1 x, 1 0 1 dw,
51
dy = (1 0) < dt + dv . (158b)
2

The optimal controller for this system is [3]:

u=- (0 1)Px (159)
where
. 0 1 0 0 1 o\|. 1 0 o
dx = - P-7¢ xdt + ¢ dy (160)
1 -1 0 1 0 0 )
o
I.---1
P, P, i
and P = satisfies: '._:j,
P, Py )
—l
o
.
o 1\/P, P P, P 0 1 1 0
N
1 o2\, ("1 %2 .
1 -1/\?, P, P, Po/\1 -1 0o 1 4}*
p. P.\/0 P. P e
I ol r 2)=0 (161) ;
P, P,/\1 P, P o

[ S
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A
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R
and L = Tz satisfies:
2
0 1l z z z X 0 1 1 0
1 "2 + 1 "2 +
1 -1 22 23 22 23 1 -1 0 1
z X 1 z I
(12 ao(! ?)=0 . (162)
22 23 0 22 23
Equation (161) reduces to three equations:
22, +1-P2=0 (163a)
2 2
P3 + Pl - PZ - P2P3 = ( (163b)
2
2P2 - 2P3 +1- P3 =0 . (163c)

The positive definite solution to Equations (163) is
4.6954 2.4142
P=\2.4142 1.6131 ’ (164)

Equation (162) reduces to three equations:

2
222 +1 - Zl 0 (165a)
23 + 21 - 22 - 2122 =0 (165b)
2
222 - 223 +1 - 22 =0 . (165¢)

The positive definite solution to Equations (165) is

1.732 1
L= < > . (166)
1 1

1.t

L.

e

~

LE

IV N 4
Adnt .
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With P and I given in (164) and (166), Equations (159) and (160) reduce to

u = - (2.4142 1.6131)x (167)
A -1.732 1 A 1.7321
dx = xdt + dy . (168)
-2.4142 -2.6131 1

In the block diagonal coordinates, (10), the optimal controller is of the

form:

u=- (0 1z (169)
0 1 p3

dz = zdt + dy . (170)
Pl Pz P4

We match the Y(s) to U(s) transfer functions of these two controllers. For

controllers represented by (167) and (168),

s +1.7321 1.7321

£

= - (2.4142 1.6131)

I

(

(]
~—

2.4142 s + 2.6131

- (2.6142 1.6131) (s + 2.6131 ) (1 7321>
- 2.4142 s + 1.7321

2
s

+ 4.3452 s + 6.9403

U(s) _ = (5.7946 s + 9.3897)s
Y(s) 2 4 4.3452 s + 6.9403

(171)

For controllers represented by (169) and (170),

e e
BB
| 1 PP

j
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-1 &=
8 -1 p
%%g% = (0 1) 3 s
Py 5P, Py
' s-p 1 P ot
= (0 1) < 2 > <: 3:>s —
Pl S Pa .
2 %
$” = pyS - Py -
u(s) _ Pa® ¥ PiPy)s ary
Y(s) 2 )
8 T PSP .
Comparison of (171) and (172) gives the desired starting point for the
gradient algorithm:
Py = - 6.9403 =
P, = - 4.3452 -
(173)
Py = 1.3529
Py = - 5.7947 n
LY
',:ﬁ
To find a starting point for first-order controllers, we find the Y(s) to U(s)
transfer function for the first-order controller and attempt to match this =
transfer function to (172). The first-order controller is -
u=z (174)
dz = Elzdt + Ezdy . (175) -
Then, n
ugs) _ _P2% (176)
Y(s) s -0p,
To facilitate a comparison between (176) and (172), we attempt to cancel the i
R o
b zero in (172) -

NN T e e e e e

. . . « . . - -
- e . .- el et e, - - . A - LN e e . L e e, . ... .-t Y .
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P¢P
| pasé . g) g
U(s) _ P4 -
. Y(s) 2 _ .- -
: S TPhSTh -
" u(s) Pgs g
- Y(s) = . (177)
: [ _Pip3 ( p1P3):|
- Plp3 pl A 2 Py
- 5= (P2% B P,P
4 s + 173

- Py -
= We compare (176) to (177) and set
< -
- P, = Pa = ~ 4.1743 .
. . P1P3 :

P, =p, *+ = - 5.7947 (178) R
. 1 2 -
i 4 oS
W where we have neglected the remainder in the denominator of Equation (177).

However, this remainder is not negligible, so we seek an improvement in this

Ig starting point. We can use the gradient algorithm to make this improvement

RV 2 IO A
LT e .
R LR L

by noting that choosing a degenerate single point distribution corresponds
- to the case where the parameter value is known. Therefore, by using (178)

- as a starting point for the gradient algorithm applied to the nominal system,

a more exact starting point is found. This point is

Py =- 5.9235

“ B, = -8.3097 . (179)

Note that these are the control parameters corresponding to the optimal

first-order controller for the nominal system. We use these parameters as
- the starting point for determining first-order controllers using the gradient

algorithm.
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e
(f ’ We now consider the design and analysis of least sensitive
Tii? controllers for Examples 5.1 through 5.4, for various intervals spread
Lgij evenly about the nominal values. As in Chapter 3, uniform distributions
— are induced on these intervals. The same type of approximating distributions
;%i is found using Equations (34), (35a), (39) and (41) of Chapter 3, choosing
4§££' N=3. We can use this low choice of N since the corresponding controllers
o have similar performances as controllers designed for N large have.
;i?ﬁ Therefore, we can save on computations without losing much information
fﬁ? pertinent to our analysis.
;x; Again we choose as a performance measure a plot of the difference
. between the cost, JLS(B), incurred by the least sensitive controller, and
the optimal cost, JOPT(B), for each value of the parameter over the range
.(jl of uncertainty. This is a plot of the additional cost incurred by the least
Eiif sensitive controller over the minimum cost if the parameter were known.
-?i- Now consider Example 5.1:
;Ei{ 61 unknown, 62 = -1, 63 =1, 94 =1
;;5 with the uniform distribution induced on the 10%, 30% and 50% spreads:
8, ~0[0.9,1.1]
B 81~ U[0.7,1.3] (180)
8, - U[0.5,1.5] .
Ei:k The gradient algorithm is used to calculate first and second-order least
;;; gsensitive controllers for these distributions, along with the corresponding
%2&' average cost. The results are:
I
,J

N e N LN . Tt e . LR . e N
L - PO T RS S [ S - LT RN .

e o e, T K . R L. s P
e A L A T T U TR Y . . . o e A - N Lt D T T U R DA *
MRS B IR NS S WA ST T B T TR U . S Aeaduiaibeaded “H" PP I A L W AR % TR, .| L d
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B Distribution Controller Order P, P, P, A S,
v[0.9,1.1] 1 -5.9266  -8.4104 28.6159
: 2 -7.2769  -4.3981 1.3724 -5.8667 27.2015
v[0.7,1.3] 1 -5.9822  -9.100 31.4066
" 2 -9.1375  -4.7185 1.4852 -6.3612 30.0375
o v[0.5,1.5] 1 -6.1337  -10.1914 36.1568
2 -11.3105  -5.1174 1.6304 -7.1322 34.7152

The plots of JLS(e) - JOPT(G) for the first and second-order

controllers are shown in Figures 24, 25 and 26 for each distribution. Several
observations can be made from these curves.

1) The performance of the second-order controllers exhibits most of the

properties observed in Chapter 3, which are related to the basic shape of the
performance curve. Since the first-order controllers have the same basic

- shape, they also exhibit these properties. These properties include the fact
that less performance is sacrificed at near nominal values than at off nominal

values, and that the controllers are biased towards parameter values assoclated

L I L AL

wow o LT,
e e P A
L oy ) e

) U NN anduedion At R

u. with higher costs.

=

< 2) The savings in using a second-order controller over a first-order controller
relative to the total average cost of the first-order controller is significant,

but relatively low. We can quantify this by looking at the percent decrease

B |
O T GRR

in the average cost of the second-order controllers relative to the cost of

the first-order controllers.

Distribution Decrease in JAVG

u[0.9,1.1] 5.2%

U[0.7,1.3] 4.6% -]
o u[0.5,1.5] 4.2% -

3) Since we are obligated to incur at least the optimal cost of each value of

the parameter, there is a maximum amount one can save over the average cost of

B B . . . . «  a_ e, - - P . e . D e a m = PR - - - . L A I
....... I T TN U S e te e BERRES B e RIS

. AU TR RS ) R T T A . AN .« - -\.‘_-.-.-.'.>.-_.'_.'» R
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J(81) = Japp (8P
-
1
. |
i 2
‘.ﬂ B 1st-Order
[ -7 Least 3
Sensitive ’:J
T '
]
N Minimax
-
k
3
-1 -i
[ 7 2nd-Order
o Least 4
. - Sensitive j.]
@
SN 9 °1 ‘
t1rrrp bt R
- 8.9 8.95 1.09 |.85 |.10 J
Figure 24. JLS - JOPT VS.91 for 1lst and 2nd-order controllers,
61~ U{0.9,1.1}; and JMM - JOPT vs.Sl, ale [0.9,1.1]. «1
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I8 = Jopp(8y)
12.5
10.0
= Minimax
15 A\

5.0 \

1st-Order

] N\
2.5 <
- N—__
N 2nd-0Orde
Least
- Sensitive
0.0 1T EERERERRREREN)
8.7 8.8 8.9 1.8 i 1.2
Figure 25. JLS - JOPT vs.S1 for 1st and 2nd-order controllers,

8

1° u(0.7,1.3]

; and J -J

MM oP

i/ \\\
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T vs.el, 816 (0.7,1.3].
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J(8)) = Jopp(8p)

40

-

-
38

-

o

- .

- \\
20 <

T Minimax

\\
w \ 1
lst-Order
- Least ‘\\\\
Sensitive
-
2nd-Order
- Least
Sensitive
l A

8 | . T 1

8.4 8.6 8.8 1.9 1.2 1.4 1.6

Figure 26. JLS - JOPT vs.e1 for 1st and 2nd-order controllers,

91~ U[0.5,1.5]); and JMM - JOPT vs.%l, ele [0.5,1.5].
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the first-order controllers. Figures 24, 25 and 26 show that large percentages
of the maximum possible savings are realized by the second-order controllers.
For each distribution, we find the percentage of the maximum possible savings

over the first-order costs that the second-order controllers realize.

Distribution Percent of Maximum Savings

U[0.9,1.1] 81.9%
Uu[0.7,1.3] 34.6%
U[0.5,1.5] 21.17%

Note that this percentage decreases as the uncertainty increases so that the
two controllers are more comparable as less sensitivity is desired.

4) From Figures 24, 25 and 26 we can see that the difference between the
first and second-order controllers is greater for near nominal values of the
parameter and less for off nominal values. Therefore, more performance is
sacrificed at near nominal values than at off nominal values when the first-
order controllers are used instead of second-order controllers.

These observations show that the first-order controllers have fairly
good performance relative to the total cost incurred by each type of controller,
but that the second-order controllers can realile a large amount of the total
possible improvement in performance. Also, the first and second-order
controllers become more comparable as the range of uncertainty increases.

We will discuss what these observations mean when one is considering a specific

design after the remaining examples are analyzed. =
Before proceeding to the next example, note that Observations (1) '?]

and (4) above will generally hold for the remaining examples. Therefore, we

will concentrate on observations similar to (2) and (3) in the discussions of ﬁ;

the remaining examples.
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“} Next, consider Example 5.2:
:f::f.‘ 61 =1, 62 unknown, 63 =], 64 =1
,-.
with the uniform distribution indiced on 10%, 30%Z and 50% spreads:
62~ Uf{-1.1,-0.9]
62~ U[-1.3,-0.7] (181)
o 8, ~ U[-1.5,-0.5]
- The gradient algorithm is used to calculate first and second-order least
o sensitive controllers for these distributions, along with the corresponding
: average cost. The results are:
Distribution  Controller Order Py Py P3 Py JAVG
. U[-1.1,-0.9] 1 -5.9628 -8.3610 28.3333
o 2 -6.9373 -4.3413 1.3521 -5.8081 26.8616
SN U{-1.3,-0.7] 1 -6.2947 -8.7943 29.2138
k. 2 -6.9181 -4.3118 1.3452 -5.9166 27.4057
J u[-1.5,-0.5] 1 ~7.0611 -9.7934 31.2339
{i‘ 2 ~6.9046 ~4.2621 1.3048 -6.1376  28.5435
:ffl The plots of JLS(e) - JOPT(e) for first and second-order controllers
Y ey are shown in Figures 27, 28 and 29 for each distribution. Two similar
e observations to those of Example 5.1 will be made here.
E?f. 1) We again calculate the decrease in average cost of the second-order
g!? controllers relative to the average cost of the first-order controllers.
;:g Distribution Decrease in JAVG
g U[-1.1,-0.9]

. U(-1.3,-0.7]
: U[-1.5,-0.5]

oo G W
o e e
=N
a2 e N
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5
l 1st-Order ”/'

Least
- Sensitive

]

Minimax

-
. 2nd-Order
Least Sensitive

e

0.0 1T T T T T 2
-1.10 -1.86 -1.09 -3.% -9.99

Figure 27. JLS - JOPT vs.e2 for 1lst and 2nd-order controllers,

62~ U[-1.1,-0.9]; and JMM - JOPT vs.ez, 926 [-1.1,-0.9]. ‘ g
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J(o 8

8.0

2) = Jopr(®y)

.
L]

~

LR
it

J 1lst-Order
Least
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"~

- Minimax

2nd-Order
-‘\\~‘\~ §:::§tive
1T TTT|TTT
-1.3 -{.2 1.1 -1.8 -8.9 9.3 -9.7
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T

3
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el Figure 28 JLS JOPT vs 62 for 1st and 2nd-order controllers,
E,T 62~1U[—1.3,-0.7]; and JMM - JOPT vs,ez, eze (~1.3,-0.7].
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. J(8)) = Jopp(8y)
28
! -
15 /
-
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. -
n 1st-Order
. Least
u_ “ Sensitive
5
~
\ Minimax
23 | h\\\‘\\\~ 2nd-Order
- \
i N\
8
0 1 1 2
-1.6 -1.4 -1.2 -1.0 -9.8 -8.6 -9.4
‘ Figure 29. J; g = J o, Vvs.6, for lst and 2nd-order controllers,

~U[{-1.5,-0.5]); and JMM -J vs. § 626 [~1.5,-0.5].
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Note that as in the previous example, the savings are significant, but
relatively low.

2) As 1in the previous example we calculate the percentage of the maximum
savings over the first-order controller that the second~order controller

realizes.

Distribution Percentage of Maximum Savings

{-1.1,-0.9] 98.3%
(-1.3,-0.7] 88.7%
(-1.5,-0.5] 80.4%

caa

Note that these results are much more dramatic than those in Example 5.1,
with only a slight decrease in savings as more parameter insensitivity is
desired.

Thus our observations in this example are similar to Example 5.1
except that the improvement of second-order controllers in this example is
generally greater. This greater improvement may be a result of the fact that
control effort for 62 has more effect on the stable subspace of the states
and thus the performance is more responsive to the greater control effort of
the second-order controllers.

Next, we consider Example 5.3:

= - 1, 6, unknown, 8, =1

3 4

with the uniform distribution induced on 107%, 307 and 507 spreads:
63~ U{0.9,1.1)]

63~ U[0.7,1.3] (182)

83~ U[{0.5,1.5] .

.........
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The gradient algorithm is used to calculate first and second-order least
sensitive controllers for these distributions, along with the corresponding

average cost. The results are:

Distribution Controller Order Py P, P Py JAVG
U[0.9,1.1] 1 -5.9157 -8.4212 28.7810
2 -7.5486 -4.4366 1.3792 -5.8814 22.4062
uf0.7,1.3] 1 -5.9351 -9.3592 33.5228
2 -12.2170 -5.2161 1.5533 -6.6179 32.4224
Uf0.5,1.5] 1 -6.2351 ~11.6023 45.3055
2 =22.2779 -6.9242 1.8494 -8.3323 44.3532

The plots of JLS(G) -J PT(8) for first and second-order controllers

0
are shown in Figures 30, 31 and 32 for each distribution. Again we make the
same types of observationms.

1) We calculate the decrease in average cost of the second-order comtrollers

relative to the average cost of the first-order controllers.

Distribution Decrease in JAV

G
U[0.9,1.1] 4.82
U[0.7,1.3] 3.3%
U{0.5,1.5] 2.1%

Again, the savings 1is significant, but relatively low.
2) We calculate the percentage of the maximum possible savings over the

first~order controllers that the second-order controllers realize.

Distribution Percent of Maximum Savings
Uf[0.9,1.1] 75.9%
vuf{0.7,1.3] 18.1%
U[0.5,1.5] 3.3%

Note that as the variance increases the relative savings that the second-order

controller realizes drops to almost nothing. Indeed, we can see from Figure 32
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Figure 30. JLS - JOPT vs, 63 for 1st and 2nd-order controllers, J
83~ U(0.9,1.1]; and J vs.63, 636 [(0.9,1.1].
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Figure 31. JLS - JOPT vs.93 for 1lst and 2nd-order controllers,

e3~ U[0.7,1.3]; and JMM - JOPT vs.63, 836 [0.7,1.3].
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Figure 32. JLS - JOPT vs.63 for 1st and 2nd-order controllers, ;:
63~ U{0.5,1.5]; and JMM - JOPT vs.e3, 636 [0.5,1.5].
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that the performances of the first and second-order controllers are almost

identical for the U{0.5,1.5] distribution.
We will see that the results for this example are similar to those

of Example 5.4. We now consider Example 5.4:

=1,8,=-1, 9, =1, 9, unknown

%1 2 3 4

with the uniform distribution induced on 10%, 30%Z and 507 spreads:
94~ U[0.9,1.1]

64-U[0.7,1.3] (183)

64~ U[0.5,1.5] .

The gradient algorithm is used to calculate first and second-order least
sensitive controllers for these distributions, along with the corresponding

average cost. The results are:

Distribution Controller Order

Py Py 3 4 AVG
U[0.9,1.1] 1 -5.9154 -8.%129 28.7238
2 -7.5431 -4.4347 1.3778 -5.8746 27.3502
U{0.7,1.3] 1 -5.9273  -9.2932 33.0063
2 -12.2456 -5.2146 1.5449 -6.5604 31.9225
U{0.5,1.5] 1 -6.2092 -11.4348 43.7246
2 -22.4724 -6.9572 1.8310 -8.2123 42.8125

The plots of JLS(G) - J (8) for first and second-order

OPT

controllers are shown in Figures 33, 34 and 35 for each distribution.
Again, we make the same tvpes of observations.
1) We calculate the decrease in average cost of the second-order controllers

relative to the average cost of the first-order controllers.
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Figure 33. JLS - JOPT vs.%4 for lst and 2nd-order controllers, ;;
94~ U{0.9,1.1]); and JMM - JOPT VS. 8, 9465[0.9,1.1]. .
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Figure 35. JLS -J
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84 for 1lst and 2nd-order controllers,
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Distribution Decrease in JAV

G
Uu[0.9,1.1] 4.8%
U[0.7,1.3] 3.3%
U[0.5,1.5] 2.1%

Again, the savings 1s significant, but relatively low.
2) We calculate the percentage of the maximum possible savings over the

first-order controllers that the second-order controllers realize.

Distribution Percent of Maximum Savings

v(0.9,1.1] 76.8%
U[0.7,1.3] 15.2%
U[0.5,1.5] 4.2%

Note that as in Example 5.3 the relative savings realized by the second-order
controller drops to almost nothing, and we can see from Figure 35 that the
performances of the first and second-order controllers are almost identical.

Examples 5.3 and 5.4 lead to very similar results. This is true

for several reasons. The canonical form of the system and the use of identical
spreads around the same nominal value make the role of 83 very similar to 64
in the transfer of the observation information to the control effort.

From these four examples we have discovered that the use of the
second-order controllers can lead to large savings over the use of first-
order controllers, but only in terms of the total savings possible. The
losses incurred by using the first-order controllers relative to the actual

coverage cost, however, is less significant. Also the two controllers become

more similar as the variance increases, as in Examples 5.3 and 5.4 where they

are seen to be almost identical in one case.
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These observations are useful when one is considering which order
to choose in the design process. Basically, if the fixed costs associated
with increasing the controller dimensionare greater than the resulting
savings in operating costs, one should probably want to choose the first-order
controller. Therefore, for higher dimensional systems, the controller used
should be that which balances the fixed cost of increasing the controller
order with the savings in operating costs that the increase realizes. This
concludes our consideration of the design of least sensitive controllers for

these examples.

5.3. Minimax Controllers

In this section we seek to find minimax controllers for these
examples. In Chapter 4 we saw that the solution to the minimax problem, (8), is
equivalent to the solution to the maximin problem, (9),if the saddle~point
condition, (56), 0f Theorem 1holds. We saw that this condition is equivalent

to showing that

L (®) < (8. (184)

where JMM(O) is the maximin cost over the parameter set and 60 is the maximin
solution point. In Chapter 4 we saw that it is difficult to find general
conditions that guarantee the satisfaction of (184). 1In this section, we
illustrate how numerical procedures can be used to design maximin controllers
and to verify (184) when the particular example is already defined.

The maximin solution occurs at the value of the unknown parameter

that maximizes the optimal cost, (8). Therefore, the maximin solution can
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" be found by inspecting a plot of JOPT(G) over the parameter range. Once the
. maximin solution is found, and since we can numerically check that S in (50a)
is stable in these examples, condition (184) may be proved by inspecting a
plot of JMM(S) over the parameter range.
. We use this numerical method of design in Examples 5.1 through 5.4
and compare the performances of the resulting controllers to those of the least
sensitive controllers.
- We start with Example 5.1:
81 unknown, 82 =-1, 63 =1, 94 =1
with 107%, 307 and 50% spreads:
'%Z;
h 8,€10.9,1.1]
I(. e
i el [(0.7,1.3] (185)
. elE[O.S,l.S]
A plot of JOPT(el) for 6165[0.2,1.8] is shown in Figure 36. From this plot
ll; we see that the maxima over intervals (185) occur at
610 =1.1
» 619 = 1.3 (186)
. 610 = 1.5
We can use the gradient algorithm to calculate the corresponding maximin
. controllers in the block diagonal coordinates. The results are:
L
Interval P p P p J ?
N 1 2 3 4 AVG .
- [0.9,1.1] -7.3819 -4.4681 1.4608 ~6.5788 27.828 ‘
0.7,1.3] -8.3046 -4.7127 1.6794 -7.9796 32.853 71

[
(0.5,1.5] -=9.2709 -4.9540 1.9009 -9.6529 39.970
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A plot of JMM(el) is shown in Figure 37 for all three intervals. From these

curves we can see that

H(81) < Tp(®y)

for each of the intervals (185) and corresponding maximin points (186).

Therefore, these are minimax controllers also.

use as our typical performance measure.

Figures 24, 25 and é6 show the plots of JMM(el) -

JOPT(el) that we

Note we can make similar observations

as we did in the case of least sensitive controllers.

1) We calculate the decrease in average cost of the minimax controllers

relative to the average cost of the fi:-st-order controllers.

Interval

———
[ Ne N
U W0

v w w

Decrease in J

AVG (Minimax)

2.8%
-4.6%
-10.5%

Decrease in J (2nd Order)

AVG
5.2%
4.6%
4.2%

Note that only for the [0.9,1.1] case are the minimax controllers better than

the first-order least sensitive controllers, and the minimax controllers are

never better than the second-order least sensitive controllers.

2) We calculate the percentage of the maximin possible savings over the

first-order controllers that the minimax controllers realize.

Interval

—_——
QOO
W O

=
W W
et e d

. e v

% of Max. Savings (Minimax)

45.8%
-36.87%
-49.57%

% of Max. Savings (2nd Order)

81.9%
34.6%
21.1%

Again we see that only in the [0.9,1.1]) case are the minimax controllers

better than the first-order controllers, and the minimax controllers are

never better than the second-order controllers.
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6,€[0.7,1.3]
1

7 /‘/

] 7/ / i
3 |
- /910 =1.1 )
| / 0,€10.9,1.1] |
i
28 l | T | l — ™

0.4 8.6 8.8 1.9 1.2 1.4 1.6

Figure 37. JMM(el) vs. 3, for various maximin controllers.
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- In this example we see that the performances of the minimax controllers
are again generally inferior to the performances of least sensitive controllers,
even with order reduction. We see that this is also true in the other

- examples.

Next we consider Example 5.2:

o 6, =1, 6

1 2unknown, 63=1, 6‘.'1
-
‘ with 10%, 30% and 50% spreads:
- 9,€ [-1.1,-0.9]
8,€ [-1.3,-0.7] (187)

626 [-1.5,-0.5]

A plot of J (62) for 626 [-1.8,-0.2] is shown in Figure 38. From this plot

OPT

we see that the maxima over intervals (187) occur at

850 = -0.9
850 = =0.7 (188)
620 = -0.5 ° [

We can use the gradient algorithm to calculate the corresponding maximin

controllers in the block diagonal coordinates. The results are: ‘:::'j

g
Interval Pl P2 P3 PA JAVG .
[-1.1,-0.9] -7.0685  -4.3528  1.3354  -6.0950 26.927 ?fi
[-1.3,-0.7] -7.3982 -4.3916 1.3016 -6.8252 27.945 L)
[-1.5,-0.5] -7.8451 -4.4654 1.2704 -7.7766 29.976 "L

S

A plot of JMM( 32) is shown in Figure 39 for all three intervals. From these

curves we can see that e
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for each of the intervals (187) and corresponding maximin points (188).

Therefore, these are minimax controllers also.

dadillh eiedesl AL ML

Figures 27, 28 and 29, show the performance of the minimax
controllers. We again make the same observations.

1) We calculate the decrease in average cost of the minimax controllers

relative to the average cost of the first-order controllers. j
Interval Decrease in JAVG (Minimax) Decrease in JAVG (2nd -Order) j
[-lol,-009] 5.02 5-2%
[-1.3,-0.7] 4.3% 8.1%
[-1.5,-0.5] 4.07 8.6%

Note here that in all three cases the minimax controllers are better than the
first-order least sensitive controllers, but are not as good as the second-

order controllers.

2) We calculate the percentage of the maximin possible savings over the first- *
order controllers that the minimax controllers realize.

i
Interval % of Max. Savings (Minimax) % of Max. Savings (2nd-Order) ;
[-1.1.-0.9] 94.0% 98.37%
{(-1.3,-0.7] 63.2% 88.7%
{-1.5,-0.5] 42.0% 80.4%
Again, we see that the minimax controller is better than the first-order
controllers, but not as good as the second-order controllers.

In Examples 5.1 and 5.2 we saw that the maximin controllers were

indeed equivalent to the minimax controllers. In the next two examples we see i
cases where this is not true. }
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t‘ Consider Example 5.3:
81 =1, 82 = -1, 83 unknown, 8A =1
| with 10%Z, 30% and 50% spreads:
636 (0.9,1.1]
836 {0.7,1.3] (189)
= € [0.5,1.
83 [0.5,1.5]
. A plot of JOPT(83) for 836 {0.2,1.8] is shown in Figure 40. From this plot
= we see that the maxima over intervals (189) occur at
830 = 0.9
' 830 = 0.7 (190)
630 = 0.5
We can use the gradient algorithm to calculate the corresponding maximin
l. controllers in the block diagonal coordinates. The results are:
Interval P1 P2 P3 P4 JAVG
[0.9,1.1] -6.7615 -4.2817 1.4940 -6.2355 28.420
1 [0.7,1.3] -6.4389 -4.1675 1.8976 -7.5453 41.525
) [0.5,1.5] -6.1749 ~4.0743 2.6272 -10.0216 107.885

A plot of JMM(63) is shown in Figure 41 for all three intervals. From these

curves we can see that ‘Jl
I (®3) < Ty (®30)
only for the interval, [0.9,1.1]. Therefore, the maximin solution corresponds #
to the minimax solution only for this interval. We can see from the plots of .
i
3
! ;
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" Jyp(83)
208
n L
) 150
| 830 = 0.5
8,€ [0.5,1.5]
B !
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' . 539 = 0.9
i %36[0.9{1.1]
%
8 T ] | T T 3 5
8.4 86 88 18 1.2 14 16 1
Figure 41. JMM vs.‘)3 for various maximin controllers. ‘
.
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the performance of these controllers in Figures 30, 31 and 32 that the

{

performance of the controllers is not good, although there are no marked
dissimilarities from cases where the maximin controllers are equivalent to

the minimax controllers. Again, we make our observations.

Y |

1) We calculate the decrease in average cost of the maximin controllers

relative to the average cost of the first-order controllers.

Interval Decrease in JAVG (Maximin) Decrease in JAVG (2nd-Order)

{0.9,1.1] 1.3% . 4.8%

[0.7,1.3] ~23.8% 3.3% o
[0.5,1.5] -138.2% 2.1% -
As can be seen, the performance of the two maximin controllers that do not

exhibit the saddle point property compare very poorly.

2) We calculate the percentage of the maximin possible savings over the first-

‘order controllers that the maximin controllers realize.

Interval % of Max. Savings (Maximin) % of Max. Savings (2nd-Order)

J¥

19.8% 75.9%
-147.1% 18.1%
-157.5% 3.3%

coo
VARV
el
VW
[E e )

v v w

(0.
(0.
[o.

Again, the poor performance of the maximin controllers that do not exhibit =
the saddle-point property is evident.
We should expect to find a similar situation in Example 5.4 as in

Example 5.3, and indeed we do. Consider Example 5.4:

el =1, 62 = -1, 93 = 1, 8, unknown

4

with 10%, 30% and 507 spreads:

" et ot e e L e g e T
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€(0.9,1.1
. 84 [ ° L e ]

645 {0.5,1.5])

£y

A plot of Jopr(ea) for 646 [0.2,1.8] is shown in Figure 42. From this plot

we see that the maxima over intervals (191) occur at

.. 640 = 0.9

8,0 = 0.7 (192)
;t 940 = 0.5 -
ob

We can use the gradient algorithm to calculate the corresponding maximin

controllers in the block diagonal coordinates. The results are:

Interval Pl P2 P3 P4 JAVG E:
[0.9,1.1] -6.7020 -4.2678 1.4906 -6.1664 283.322 ;i
[0.7,1.3] -6.2585 -4.,1239 1.8828 -7.2761 40.640 s
{0.5,1.5] -5.8769 =4.0005 2.5894 -9.4004 85.132 L

A plot of JMM(64) is shown in Figure 43 for all three intervals. From these

curves we can see that

e ®s) < he(Co0)
only for the interval, [0.9,1.1]. Therefore, as in Example 5.3, the other
two controllers are not minimax controllers, and they exhibit the same type

of poor performance. Again, we make the observations.

1) We calculate the decrease in average cost of the maximin controllers

T

relative to the average cost of the first-order controllers.

.
FAfAge.

.......... et et et N L S A et .. T T T TS
e e T e T e T T e e BN N

P A T I P i I T I I A Rl SR .
R L e i Car S alln Ea Al b

AL - P - oo Te R v . et Y
W g‘lk‘\s.\:;‘tn.{:._u PRRIY TP . DU T . VIR N 4 NI RSN




i
B 4N

. [N a . . - i) LI T |
L . oLt Lt PR T SPI T
4 Vet e L Vet )
Co P . . - N . I TR .
. . NN . . .

Jopr(84)

148

)
]
Rk
L d

d.L

Gt

L

|

& .
[

208

Lo

.
e LN

dal

\’\\

oy
T
< alal.

o

8 AR R RN AR AR R AN

Figure

........
.........

8.5 0.5 8.75 1.8 1.5

42, J vs. 8

OPT 4°

...........
................

.......................

1.58

|IRARB AR 4

1.5 2.9

.

K

.

.

-3

]

—

T G

...... \ N
i S e i e _di Adeldadalala s




[

149

. JMM(64)
200

158
] 8,0~ 0+
8,€ [0.5,1.5]

l%q /

9 =R

40
945 (0.7,1.3]

= \_
o 8,0 = 09
646 [0.9,1.1]

8 T | T I { 1 .
8.4 8.6 8.8 1.8 1.2 1.4 {.6

Figure 43. JMM vs. 94 for various maximin controllers.
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Interval Decrease in JAVG (Maximin) Decrease in JAVG (2nd-Order)
[0.9,1.1] 1.4% 4.82
[0.7,1-3] -23-1% 303%
[0-5’105] -94.72 Zelz

2) We calculate the percentage of the maximum possible savings over the first-

order controllers that the maximin controllers realize.

Interval % of Max. Savings (Maximin) %Z of Max. Savings (2nd-Order)
[0.9,1.1] 22.3% 76.8%
[0.7,1.3] -149.4% 15.2%
[0.5,1.5] -56.9% 4.2%

As in Example 5.3, the maximin controllers that do not satisfy the saddle-
point condition exhibit poor performance.

We have seen from these examples that although the minimax (or
maximin) controllers are not better than the second-order least sensitive
controllers, there are many cases where they are superior to the first-order
least sensitive controllers, particularly when the intervals are relatively
small.

Note that in few cases is the maximum cost over the interval greater
for the minimax controllers than for the least sensitive controllers (see
Figure 27 for an exception), so that this design consideration is not as much

of an issue in these examples.

S.4. Conclusions

In conclusion, the design of least sensitive and minimax controllers

for a second-order system was considered in this chapter. The dimension of
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the system allowed for the investigation of the effects of reduced-order
least sensitive controllers, and also provided an illustration of a numerical
design procedure for minimax controllers.

In the case of the design of least sensitive controllers, it was
seen that some performance is sacrificed for order reduction. Furthermore,
the sacrifice in performance is on the average a small percentage of the total
average cost if one used an optimal controller at each value of the parameter.
However, a large percentage of this additional cost can be removed using
full-order controllers in these examples. The choice of controller order
was seen to be a trade-off between the extra fixed costs for increasing the
order and the lower operating costs this increase realizes.

In the case of the design of minimax controllers, the dimension of
the system provided an illustration of a numeric design procedure that can be
performed if one has a specific example. The maximin solutions were found
using a plot of the optimal cost over the range of uncertainty. The saddle-
point condition was verified using a plot of the cost incurred by the maximin
controller over the range of uncertainty. Some examples where the saddle point
did not exist were found, and the corresponding controllers were see; to exhibit
poor performance. Finally, i1c was seen that the minimax controllers generally
have poorer performance than the second-order least sensitive controllers, but
in many cases have better performance than the first-order least sensitive

controllers.
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{ CHAPTER 6

CONCLUSIONS

- This thesis has considered the design of controllers for linear

£

stochastic systems where the corresponding models have uncertain parameters.
In Chapter 1, we discussed several ways of handling these uncertainties in -

- the design process. One method is to induce a distribution on the parameter

I

set. Another method is to allow for variations about a nominal value. A
;. third method is to assume that the parameter lies within a given set, and
L could take values which are unfavorable to the designer. -
% The objectives for the design of controllers for handling these
'5 uncertainties may vary. One may only desire stable performance over the whole
range of parameter values. One may desire that the cost incurred for the ;i
s controller at each value of the parameter be less than a certain value.
Another objective may be to achieve near optimal performance for as wide a

range of parameter values as possible. The two design procedures discussed

AL

in Chapters 3 and 4 are based on certain assumptions about the parameter sets,
and achieve design objectives based on these assumptions.
;& In Chapter 3, we assumed that the parameter set is a compact set
- centered about a nominal value. We assumed each value equally likely; so we s
induced a uniform distribution on the parameter set. Our design objective was
to have as near optimal performance as possible for the widest range of off
nominal values of the parameter in the set. Using the assumptions on the Si

.- parameter set, we were able to formulate a problem where we minimized the

-

average cost over the entire set.
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|l The resulting problem is a constrained optimization problem.
. Ashkenzai and Bryson [1] developed a method of solution when the parameter
' set has a finite number of values, and a discrete distribution is assumed.
|. This procedure was extended here to solve problems when the parameter set is

compact and a continuous distribution is assumed.

Some scalar examples were investigated to see what design objectives

were met. It was found that:

1) Performance was best at values of the parameter near the nominal value,
but biased towards those values that are associated with higher costs.

2) The performance generally worsened as the value of the parameter under
consideration is further away from the nominal value.

3) The performance is near optimal for certain values of the parameter, but
not optimal at any value, so that some performance is always sacrificed at all
values of parameter in order to achieve less sensitivity.

In Chapter 4, we assumed that the unknown parameters were in convex,
compact sets centered around a nominal value. Our design objective was to
find the best controller for the worst-case model. Solving this problem
directly is infeasible since we cannot describe all models associated with
every admissible control. Another problem is to find the best control for
all models, and then to find the model that exhibits the worst cost when
excited by its optimal controller. The two problems, described by (8) and (9),
are equivalent if a saddle point exists at the solution point of (9).

We outlined a procedure for solving the maximin problem, (9), by

using the Fréchet differentials of the optimal cost function, (48). Looze,

Poor, et al. [7] have shown that a saddle point exists for a general class of
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uncertainty sets where the uncertainty lies in the noise covariance. We were ;;
unable to establish the same type of result when the uncertainty is in the .
system dynamics because the formulation of J(u,8) in (5) became too complicated.

However, a summary of the conditions a problem must satisfy for a saddle point ;2
to exist was detailed in Theorem 2. |

We then considered the equivalence of (8) and (9) for scalar systems
and parameter sets that are intervals on the real line. We found cases where

the saddle point does not exist, but we were able to describe all the sets

+°

.

satisfying the assumptions such that a saddle point does exist.

L:

The examples of Chapter 3 were then investigated in Chapter 4 to see

.
e

what design objectives were met. It was found that: E;

1) The controllers are optimal at the maximin point, so that there exist some

k..

values of the parameter such that the performance of the minimax controllers
is better than the least sensitive controllers.

2) The performance worsens as we consider values of the parameter that are

Jas

further away from the maximin point to such a degree that we found the least
sensitive controllers exhibit superior performance over most of the range of
uncertainty.
3) We found that in some cases the maximum cost for the minimax controllers 14
is less than the maximum cost for the least sensitive controllers.

In Chapter 5, we considered a two dimensional system in orde~ to -
illustrate some additional properties of these two types of controllers.
First, thedesigns of full-order and reduced-order least sensitive controllers

were considered. We saw that performance was sacrificed when the order of the

(R

controller was reduced, but this sacrifice is a small percentage of the total

average cost, so that it may be desirable to use a reduced order controller
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over the full order controller if the savings in the fixed costs are
comparable to the additional operating costs exhibited by the reduced order
controllers.

Second, a numerical procedure for designing minimax controllers
for specific examples was illustrated. The maximin solution was found by
investigating a plot of the optimal cost for each value of the parameter. The
saddle point condition was checked using a plot of the cost incurred by the
maximin controller for each value of parameter in the set. Using this
procedure we found examples where the saddle point does not exist, and we saw
that these maximin controllers exhibited poor performance.

We compared the performances of the minimax and maximin controllers to
that of the least sensitive controllers for these examples. It was seen that in
many cases the minimax controllers exhibited better performance than the first-
order controllers, but were never better than the full order controllers.

The choice of minimax controllers or least sensitive controllers
must be based on one's initial design objectives. If we simply desire better
performance over the widest range of parameter values, the least sensitive
controllers would be preferred. However, there are cases when the maximum

value of the least sensitive controllers exceeds that of the minimax control-

lers, in which case the maximin controllers may be preferred if there is a
ceiling on the maximum cost that is tolerable. :i
Reduced-order least sensitive controllers may be preferred over

higher or full-order controllcrs if the saving in the fixed costs of the order

reduction is comparable to the operating losses incurred by reducing the order.
One avenue for future work may be to systematize the decision process of what

order 1s most desirable for a certain class of systems.
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There is also a need to obtain saddle point results for maximin
controllers designed for systems of higher dimension. There may be a class
of parameter sets such that a saddle point condition for each example
considered may be relieved to some degree.

Furthermore, our choices of design are not necessarily restricted to
the two methods considered in this thesis. One idea is to use a combination
of the two designs, for instance, one can use a least sensitive controller
designed for an interval that is wider than the interval under considerationm,
and thus can reduce the high maximum costs that are prevalent at the end points
of the intervals. Of course, this sacrifices performance at other values in the
interval. Therefore, one should not necessarily restrict his choices of
controllers to the designs considered in this paper. Our main interest is in

designing the controller that best achieves our design objectives.
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‘ APPENDIX

A CONJUGATE GRADIENT ALGORITHM

This program solves the necessary conditions of
the optumization problem in Chapter 3. A conjugate
gradient algorithm, ZXCGR, is used from the IMSL
library [6]. An explanation of the algorithm can be
found in [8].

This program first reads in the system information,
then calculates an approximating discrete distribution
to the uniform distribution., Then, after being given
the initial values of P, the program calls the gradient
routine, ZXCGR, which calls JTP for the values of JAY
and its gradients, DHAM.

DOOOOOOOO0OOO0O0O00O000

DOUBLE PRECISION S(20,20),G(10,10),N(20,20),H(10,10),L(10,10),
V(20,20),W(20,20),WU(10,10),
PT, T(2,1000),
P(10),DHAM( 10) ,WK(60),
ACC, MAXFN, DFPRED, JAY, AT,BT, INC, VAL, TEM, E
INTEGER NX, NU, NY, Nz , NW, NV, NDIST,
NFT, NGT, NKT, NHT,
n(5’3) 'GT(5,3) ’KT(S’3) 1HT(5’3) ’
NP, IER,I,J
COMMON s(20,20),6(10,10),N(20,20) ,H(10,10),L(10,10),
v(20,20),W(20,20),WU(10,10),
PT,T(2,1000),
NX, NU, NY, NZ ,NW, NV, NDIST,
NFT, NGT, NKT, NHT,
FT(5,3),6T(5,3) ,KT(5,3) ,HT(5,3)
EXTERNAL JTP

> 2 > 2

= o

L
e

This section reads in the system matrices, their
dimensions, and the location of the unknown parameters
in the system matrices.

These are the dimensions of the system matrices.

QOO0

READ(5, ®*)NX, NU,NY, NZ , NW, NV, NDIST

This reads the entries of the "F" matrix.

e NoNe]

READ(S,*)((s(I,J),d=1,NX),I=1,NX)

This reads the location of the unknown parameters in F.

NFT- number of parameters in F
. FT(I,1)- row location of parameter

[ EeNs NN ]

»
SN ¥ VIR RIS, 3°

.
.- . . - ar . . . . . e C e
et et et At BRI B T AT AP . : el . P N . A - el e
WA NI N, CR /AL T S T AR U SN G AL AL SIS ST SR S GRS S G S A Y S G G- G S A W




T EaidC A ettt ant AP AL AL A Sl il A AN PRUIRLMEL A ar-iiad AR g it Al

158

FT(I,2)= column location of parameter
FT(I,3)- entry of T vector to be put in this location

e NeNel

READ(S, #)NFT, ((FT(I,J),J=1,3),I=1,NFT)
C Entries of the "G" matrix.

READ(5,#*)((G(1,J),J=1,NU),I
READ(S.')NGT.((GT(I J) J=

—l-
w Il
Nt wal

C Entries of the "K" matrix

READ(S,.)((N(I J)a oN“) I=1,NX)
READ(5, #)NKT, ((gT( »J),d=1,3),I=1,NKT)

Entries of the "H"™ matrix

Qa0

READ(5,®)((H(I,J),J=1,NX),I=1,NY)
READ(5, ®)NBT, ((HT(I,J),Jd=1,3),I=1,NHT)

The following read the entries of the L, Q, R, WX,
and WU matrices, respectively.

(e Re NP N ]

READ(S, ®) ((L(I,J),J=1,NV),I=1,NY)
READ(5, #)((V(I,J),J=1,NW),I=1,NW)
READ(5,%) ((V(NW+I,NW+J),J=1,NV),I=1,NV)
READ(5, #)((W(1,J),J=1,NX),I=1,NX)
READ(5, ®) ((WU(I,J),Jd=1,NU),I=1,NU)

This section calculates an approximating discrete
distribution to the uniform distribution for a
one dimensional T vector. User must supply any
code needed for higher dimensional T vectors.

This reads in the desired interval of T values for
the uniform distribution.

OO0 0O0

READ(S, #)AT,BT

This calculates the discrete distribution.

e NeNel

IF(NDIST.EQ.1)GOTO03
E=0.0
DO 1 I=1,NDIST=2

1 E=E+]1®#82
TEM=DSQRT(12.0%#(1.0/NDIST-.25+E/ (NDIST#(NDIST~1)##2)))
INC=(BT=-AT)/TEM/ (NDIST=1)
VAL=(AT+BT)/2-(BT-AT)/2/TEM
DO 2 I=1,NDIST
T(1,I)=VAL

2 VAL=VAL+INC
GOTO4

3 T(1,1)=AT

b
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c
. C This section provides the initial value of P for
II C the local gradient algorithm, ZXCGR, and also some
c other initial values the routine needs. See Reference
C [6] for details on the usage of ZXCGR.
c
4 PT=1.0/NDIST
DO 5 I=1,NX
DO 5 J=1)Nx

5 W(I,J)=PTW (I,J)
NP=(NU+NY)#NZ
READ(5,#*)(P(1),I=1,NP)
READ(5, ®)DFPRED
ACC=.1e-9
MAXFN=20
CALL ZXCGR(JTP,NP, ACC,MAXFN,DFPRED, P, DHAM, JAY,WK, IER)

ZXCGR yields the stationary values of P, the value of the
cost, JAY, and the gradients, DHAM, at those values of
the vector, P.

OOOO0

PRINT100,(P(I),I=1,NP)
PRINT100, (DHAM(I),I=1,NP)
100 FORMAT(2X,5(E14.8,2X)/)

PRINT#, JAY
STOP
END
c
C
SUBROUTINE JTP(NP,P,JAY,DHAM)
C
c
C This subroutine calculates JAY, and its gradients, DHAM,
C which is the information needed for the IMSL conjugate
C gradient algorithm, ZXCGR [6].
c

DOUBLE PRECISION S(20,20),G(10,10),N(20,20),H(10,10),L(10,10),
v(20,20),W(20,20),WU(10,10),
PT, T(2,1000),
B(10,10),C(10,10),DB(10,10),DC(10,10),
DS(20,20),DN(20,20),DW(20,20),
cov(20,20),LAM(20,20),
ALPHT(190,190),RESB(190,190),RVCR(190),RVLR(190),
RES(20,20) ,RESA(20,20),RVC(190),RVL(190),
P(NP) ,DHAM(NP) ,JAY,work(200)

INTEGER NX,NU,NY,NZ,NW, NV, NDIST,

- NFT,NGT, NKT, NHT,
Fr(s,3),67(5,3),kKT(5,3),HT(5,3),
NP,NZT,NS,NN,NVEC,
1,J,IA,IB,IC,ID,IP,M,LM,KK,II,LL,JJ,IER

COMMON s(20,20),G(10,10),N(20,20),H(10,10),L(10,10),
v(20,20),W(20,20),WU(10,10),
PT, T(2,1000),

B
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B ¥ S
R &G! Yihh

A NX,NU,NY,NZ ,NW, NV, NDIST,
A NFT,NGT, NKT, NHT,
A F1(5,3),6T(5,3),KT(5,3),HT(5,3)

)'l'.vll"l

¢

Some iniiializations that are needed.

‘A
QOO0

4
0% NS=NX+NZ

] NN=NW+NV
. NVEC=NS#®(NS+1)/2
" NZT=NzZ/2%2
. JAY=0
- - DO 6 I=1,NP
DHAM(I)=0

~'4]

This section puts the values of P(IP) into the
appropriate entries of A(P), B(P), and C(P).

QOO0
d)

o IP=0
A DO 1 I=2,Nz,2 -3
IP=IP+1
S(NX+I,NX+I-1)=P(IP)
IP=IP+1
- S(NX+I,NX+I)=P(IP)
o5 1 S(NX+I-1,NX+I)=1
- IF(NZT.EQ.NZ )GOTO2
IP=IP+1 B
S(NS,NS)=P(IP) -9
2 DO 3 I=1,M
DO 3 J=1,NY o
IP=IP+1 e
3 B(I,J)=P(IP)
L DO 4 I=2,NZ,2 -
J 4 c(1,I)=1 ..:
= IF(NZT.NE.NZ)C(1,NZ)=1 ]
= DO 5 I=2,NU
R DO 5 J=1,N
- IP=IP+1
C(I,J)=P(IP)

. La

This loop sums JAY and DHAM for all the values of T
in the distribution that was passed from the main
program.

oaooaowm

DO 1000 ID=1,NDIST

This section puts the values of T into the appropriate )
entries of F, G, X, and H, according to the positions a
indicated by FT, GT, KT, HT, respectively.

c
c
c
C
c

= DO 10 I=1,NFT
S(Fr(1,1),FT(1,2))=T(FT(I,3),ID)
DO 11 I=1,NGT
G(GT(1,1),GT(I,2))=T(GT(I,3),ID)

q
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DO 12 I=1,NKT
. 12 N(KT(I1,1),KT(I,2))=T(KT(ZI,3),ID)
‘. DO 13 I=1,NHT
3  H(HT(I,1),HT(I,2))=T(HT(I,3),ID)

This section calculates S, W, and NVN!,

These are needed to solve the Lyapunov equations,
(24), and (27).

QOO0 -~

!! CALL VMULFF(G,C,NX,NU,NZ,10,10,RES,20,IER)
B DO 20 I=1,NX
g DO 20 J=1,N2
= 20  S(I,NX+J)=RES(I,J)
- CALL VMULFF(B,H,NZ,NY,NX,10,10,RES,20,IER)
DO 21 I=1,NZ
- DO 21 J=1,NX
-~ 21 S(NX+I,J)=RES(I,J)
CALL VMULFF(B,L,NZ,NY,NV,10,10,RES,20,IER)
"o DO 22 I=1,NZ
DO 22 J=1,NV
22 N(NX+I,NW+J)=RES(I,J)
CALL VMULFM(C,WU,NU,NZ,NU,10,10,RESA,20,IER)
CALL VMULFF(RESA,C,Nz,NU,NZ,20,10,RES,20,IER)
DO 23 I=1,NZ
DO 23 J=1,N2
"~ 23 W(NX+I,NX+J)=PT®RES(I,J)
] CALL VMULFF(N,V,NS,NN,NN,20,20,RESA,20,IER)
CALL VMULFP(RESA, N, NS, NN, NS, 20,20,RES,20,IER)

This section rearranges the entries of S into a matrix,
ALPHT, so that the equations, (24) and (27), are of the
form, "Ax=B", which is suitable for inversion. See
Reference [U4].

OOO0O00O00

M=0
DO 70 II=1,NS
DO 70 JJ=II,NS :
M=M+1 —~ 4
» IF(II.EQ.JJ)GOTOT7 8 o
“ RVC(M)=-RES(II,JJ) ]
RVL(M)=-W(II,JJ) ~
GOTOT9 s
78  RVC(M)=z-RES(II,JJ)/2 e
RVL(M)=-W(II,JJ)/2 =
79  LM=0 -~
DO 70 KK=z1,NS ]
DO 70 LL=KK,NS .
LMzLMe+1 AKX
) IF(KK.EQ.II.AND.LL.NE.JJ)GOTOT )
o IF(KK.NE.II.AND.LL.EQ.JJ)GOTOT72
IF(KK.NE.II.AND.LL.NE.JJ.AND.KK.EQ.JJ.AND.LL.NE.II)GOTOT3
. IF(KK.NE.II.AND.LL.NE.JJ.AND.KK.NE.JJ. AND.LL.EQ.II)GOTOT4
. IF(KK.NE.II.AND.LL.NE.JJ.AND.KK.NE.JJ. AND.LL.NE.II)GOTOT5 =
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IF(KK.EQ.IX.AND.LL.EQ.JJ.AND.KK.EQ.JJ.AND.LL.EQ.II)GOTO76
IF(KK.EQ.II.AND.LL.EQ.JJ.AND.KK.NE.JJ.AND.LL.NE.II)GOTOT7
ALPHT(M,LM)=S(LL,JJ)

GOTOT0

ALPHT(M,LM)=S(KK,II)

GOTOT0

ALPHT(M,LM)=S(LL,II)

GOTOTO

ALPHT(M,LM)=S(KK,JJ)

GOTO70

ALPHT(M,LM)=0

GOTOTO

ALPHT(M,LM)=S(KK,II)

GOTO70

ALPHT(M,LM)=S(KK,II)+S(LL,JJ)

CONTINUE

This subroutine inverts ALPHT so that COV and LAM
can be calculated. A warning - LINV2F often will
not work for smaller sizes of ALPHT (dimension 3X3).

CALL LINV2F(ALPHT,NVEC, 190,RESB, 12,WORK, IER)

This section calculates COV and LAM using the inverted
ALPHT.

CALL VMULFF(RESB,RVL,NVEC,NVEC,1,190,190,RVLR, 190,IER)

"CALL VMULFM(RESB,RVC,NVEC,NVEC,1,190,190,RVCR, 190,IER)

IP=0

DO 31 I=1,NS

DO 31 J=I,NS
IP=IP+1
COV(I,J)=RVCR(IP)
COV(J,I)=RVCR(IP)
LAM(I,J)=RVLR(IP)
LAM(J,I)=RVLR(IP)

This section calculates JAY=tr[W®COV].

n

CALL VMULFF(W, COV, NS, NS, NS, 20,20, RES, 20, IER)
DO 32 I=1,NS
JAY=JAY+RES(I,I)

This section calculates the gradients of JAY, DHAM,
for the P's that are entries of the "A(P)" matrix.
For the "A" parameters-

DHAM=tr{ [LAM®DS+DS ' SLAM]®COV}

IP=0

DO 40 I=2,NZ,2
IP=IP+1
DS(NX+I,NX+I-1)=1

...............................................
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CALL VMULFF(DS,CovV,NS,NS,NS,20,20,RESA,20,IER)
CALL VMULFF(RESA,LAM,NS, NS, NS, 20,20,RES, 20, IER)

DO 41 IA=1,NS

DHAM(IP)=DHAM(IP)+2*RES(IA,IA)

DS (NX+I,NX+I-1)=0
IP=IP+1
DS (NX+I,NX+I)=1

CALL VMULFF(DS,COV,NS, NS,NS,20,20,RESA,20,1ER)
CALL VMULFF(RESA,LAM,NS,NS, NS, 20,20,RES,20,IER)

DO 42 IA=1,NS

DHAM(IP)=DHAM(IP)+2%RES(IA,IA)

DS(NX+I,NX+I)=0
IF(NZT.EQ.NZ )GOTO44
IP=1IP+1

DS(NS,NS)=1

CALL VMULFF(Ds, COV, NS, NS, NS, 20,20,RESA, 20,IER)
CALL VMULFF(RESA,LAM,NS,NS,NS,20,20,RES, 20,IER)

DO 43 IA=1,NS

DHAM(IP)=DHAM(IP)+2%RES(IA,IA)

DS(NS,NS)=0

This section calculates the gradients of JAY, DHAM,
for the P's that are entries of the "B(P)"™ matrix.

For the "B" parameters -

DHAM=tr{[LAM®DS+DS '#LAM]#COV}

+tr{LAM®[DNSVEN'+NSV#DN' ]}

DO 50 I=1,N2
DO 50 IA=1,NY
IP=IP+1
DB(I,IA)=1

CALL VMULFF(DB,L,NZ,NY,NV,10,10,RES,20,IER)

DO 53 IB=1,NZ
DO 53 IC=1,NV
DN(NX+IB,NW+IC)=RES(IB,IC)

CALL VMULFF(DN,V,NS,NN,NN,20,20,RESA,20,IER)
CALL VMULFP(RESA,N,NS, NN, NS, 20,20,RES, 20,IER)
CALL VMULFF(N,V,NS,NN,NN,20,20,RESB, 190, IER)
CALL VMULFP(RESB,DN,NS,NN,NS, 190,20,RESA, 20,IER)

DO 54 IB=1,NS
DO 54 IC=1,NS

RES(IB,IC)=RES(IB,IC)+RESA(IB,IC)
CALL VMULFF(LAM,RES, NS, NS, NS, 20,20,RESA,20,IER)

DO 55 IB=1,NS

DHAM(IP)=DHAM(IP)+RESA(IB,IB)

CALL VMULFF(DB,H,NZ,NY,NX,10,10,RES,20,1EKR)

DO 56 IB=1,NZ
DO 56 IC=1,NX
DS(NX+IB,IC)=RES(IB,IC)

CALL VMULFF(DS,COV,NS,NS,NS,20,20,RESA, 20, IER)
CALL VMULFF(RESA,LAM,NS,NS,NS, 20,20,RES, 20, IER)

DO 57 IB=1,NS
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57 DHAM(IP)=DHAM(IP)+2%RES(IB,IB)
DO 58 1IB=1,M2
o DO 59 IC=1,NV
B 59 DN(NX+IB, NW+IC)=0
DO 58 IC=1,NX
58 DS(NX+1B,IC)=0
DB(I,IA)=0

. l',.l" ;
e~ PP

This section calculates the gradients of JAY, DHAM,
for the P's that are entries of the "C(P)" matrix.
For the "C¥ parameters -

DHAM=tr { [DW+LAM®DS+DS ' SLAM]#COV }

OOOQOOO%

DO 60 I=2,NU
DO 60 J=1,N2
IP=IP+1
DC(I,d)=1
CALL VMULFM(DC,WU,NU,NZ,NU,10,10,RESA,20,IER) ‘(.
- CALL VMULFF(RESA,C,NZ,NU,NZ,20,10,RES,20,IER)
3 DO 61 IA=1,NZ
T DO 61 IB=1,NZ
o 61 DW(NX+IA,NX+IB)=RES(IA,IB)
’ CALL VMULPM(C,WU,NU,NZ,NU,10,10,RESA, 20, IER)
CALL VMULFF(RESA,DC,NZ,NU,NZ,20,10,RES,20,IER)
DO 67 IA=1,NZ
DO 67 IB=1,NZ
67 DW(NX+IA, NX+IB)=DW(NX+IA,NX+IB)+RES(IA,IB)
: CALL VMULFF(DW, COV, NS, NS, NS, 20,20,RES, 20,IER)
DO 62 IA=1,NS
S 62 DHAH(IP)-DHAM(IP)+PT'RFS(IA IA)
" DO 63 IA=1,N2
2 DO 63 IB=1,MZ
e 63 DW(NX+IA, Nx-o-IB )=0
CALL VMULFF(G,DC,NX,NU,NZ,10,10,RES,20,IER)
DO 64 IA=1,NX
DO 64 IB=1,NZ
ot 64 DS(IA,NX+IB)=RES(IA,IB)
Py - CALL VMULFF(DS,COV,NS,NS,NS,20,20,RESA, 20, IER)
o CALL VMULFF(RESA,LAM,NS,NS, NS, 20,20,RES, 20, IER)
s DO 65 IA=1,NS
,'_}f:? 65 DHAM(IP)=DHAM(IP)+2%RES(IA,IA)
S DO 66 IA=1,NX
o= DO 66 IB=1,Nz
o 66  DS(IA,NX+IB)=0
60  DC(I,J)=0
R c
B C Continue with another value of T from the distribution
S ¢ provided by the main program.
- 1000 CONTINUE
‘A RETURN
S END -
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